Patents by Inventor Hamid Safiri

Hamid Safiri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10536258
    Abstract: Multi-domain clock generation with skew compensation is based on free-running counters in each of the multiple clock domains. Multi-domain clock generation circuitry provides at least first and second domain clocks generated with randomization, each based on an input clock with an input clock frequency, the domain clocks having a relative clock skew that is varied over time in magnitude and direction. A first circuit in a first clock domain, configured for operation with the first domain clock, includes a first free-running counter with a pre-defined first selected roll-over count, to generate a first free-running count (N1(k)) based on the first domain clock. A second circuit in a second clock domain is configured for operation with the second domain clock, and includes a second free-running counter with a pre-defined second selected roll-over count, to generate a second free-running count (N2(k)) based on the second domain clock.
    Type: Grant
    Filed: June 2, 2018
    Date of Patent: January 14, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hunsoo Choo, Hamid Safiri, Nikolaus Klemmer, Jaimin Mehta, Srinadh Madhavapeddi, Charles Kasimer Sestok, Vijayavardhan Baireddy
  • Publication number: 20190372747
    Abstract: Multi-domain clock generation with skew compensation is based on free-running counters in each of the multiple clock domains. Multi-domain clock generation circuitry provides at least first and second domain clocks generated with randomization, each based on an input clock with an input clock frequency, the domain clocks having a relative clock skew that is varied over time in magnitude and direction. A first circuit in a first clock domain, configured for operation with the first domain clock, includes a first free-running counter with a pre-defined first selected roll-over count, to generate a first free-running count (N1(k)) based on the first domain clock. A second circuit in a second clock domain is configured for operation with the second domain clock, and includes a second free-running counter with a pre-defined second selected roll-over count, to generate a second free-running count (N2(k)) based on the second domain clock.
    Type: Application
    Filed: June 2, 2018
    Publication date: December 5, 2019
    Inventors: Hunsoo Choo, Hamid Safiri, Nikolaus Klemmer, Jaimin Mehta, Srinadh Madhavapeddi, Charles Kasimer Sestok, Vijayavardhan Baireddy
  • Patent number: 10218338
    Abstract: Aperiodic clock generation with clock spur suppression is based on cascaded randomizers, such as for mixed signal devices. A clock generator circuit includes an input node to receive the input periodic clock signal having an input-clock frequency. A first randomizer circuit coupled to receive the input clock signal from the input node, to perform signal randomization to suppress spurious signal content associated with (a) the input clock signal, and (b) the first randomizer circuit, and to generate an intermediate clock signal. A second concatenated randomizer circuit is coupled to receive the intermediate clock signal, to perform signal randomization to suppress spurious signal content associated with (a) the intermediated clock signal, and (b) the second randomizer circuit, and to generate an aperiodic output clock signal having a pre-defined average output-clock frequency that is less than the input-clock frequency. Example randomizers are a delta-sigma divider and a pulse swallower (in any order).
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: February 26, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Nikolaus Klemmer, Chan Fernando, Jaimin Mehta, Srinadh Madhavapeddi, Hamid Safiri, Atul Kumar Jain
  • Patent number: 10187071
    Abstract: A PLL including a VCO with a variable capacitance (such as an LC VCO) including a switched capacitor bank and a varactor, the PLL providing lock range extension over temperature using dynamic capacitor bank switching to dynamically adjust varactor set point based on junction temperature. The varactor is responsive to the Vctrl control voltage to adjust a capacitance of the variable capacitance to control the phase of the PLL signal. Compensation circuitry dynamically adjusts varactor set point by dynamically switching the capacitor bank based in a junction temperature associated with the PLL circuitry, thereby extending PLL lock range over temperature.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: January 22, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Himanshu Arora, Siraj Akhtar, Lu Sun, Hamid Safiri, Wenjing Lu, Nikolaus Klemmer
  • Publication number: 20170264302
    Abstract: A multi-ladder DAC includes first and second resistor ladders, with a switch-interconnect. The switch-interconnect includes a second set of switches connected between each node of the first ladder and the top and bottom tap points of the second ladder. All other second ladder tap points are part of a loop tied to the nodes above and below each resistor through a second set of switches. Because no current flows through the switches that tie the top and bottom second-ladder tap points to the nodes of the first ladder, avoiding IRswitch error, thereby improving DNL.
    Type: Application
    Filed: December 21, 2016
    Publication date: September 14, 2017
    Inventors: Himanshu Arora, Siraj Akhtar, Lu Sun, Hamid Safiri, Wenjing Lu, Nikolaus Klemmer
  • Publication number: 20160050035
    Abstract: A signal profiler generates and monitors a signal profile corresponding to signal power (absolute or relative) per frequency band. The signal profiler includes a signal profile generator and a signal profile monitor. The signal profile generator processes a received signal in pre-defined frequency bands, and captures frequency-band signal power information into frequency bins, this frequency-binned signal power information constituting a signal profile. The signal profile monitor monitors the signal profile, including variations in the signal profile based on pre-defined criteria, and output corresponding profile-variation information (such as flags or interrupt requests). The signal profile generator is an FFT engine. The signal profile monitor is an FSM (finite state machine). An example application is use in a direct conversion wireless receiver to monitor relative image channel power as a signal profile variation that can be used to invoke QMC compensation/configuration.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 18, 2016
    Inventors: Hunsoo Choo, Hamid Safiri, Nikolaus Klemmer
  • Patent number: 9026069
    Abstract: A method, device and computer program product is provided for sending a data signal and a clock signal between a radio frequency circuit of a device and a baseband circuit of the device, the radio frequency circuit being configured for at least one of transmission and reception of radio signals in a radio frequency band, where the clock signal has a clock frequency Fc. The method comprises selecting the clock frequency Fc to be a rational multiple of the 0.270833 MHz symbol rate of the Global System for Mobile Communications (GSM) standard and a rational multiple of the 3.84 MHz chipping rate of the Wideband Code Division Multiple Access (WCDMA) interface. The clock frequency Fc is selected such that the clock signal can be generated using a 38.4 MHz or 19.2 MHz reference clock signal, a non-fractional Phase Locked Loop clock multiplier and an output divider, without first having to divide down the reference clock signal.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: May 5, 2015
    Assignee: Nvidia Technology UK Limited
    Inventors: Abdellatif Bellaouar, Steve Felix, Hamid Safiri
  • Patent number: 8836434
    Abstract: A digital frequency synthesizer with an automatic calibration system. The digital frequency synthesizer is calibrated by initiating a coarse tuning operation to rapidly reach a preliminary frequency that is proximate to the desired final frequency. A calibration procedure is then executed for adjusting gain in the frequency synthesizer based on the preliminary frequency. This test involves applying one or more test signals to the frequency synthesizer and measuring a signal generated in the frequency synthesizer. This measured signal corresponds to a gain response of the circuit at the preliminary frequency. When the expected gain is known, any difference relative to the gain of the measured signal is used to adjust the gain in a circuit of the frequency synthesizer such that the actual gain substantially matches the expected gain.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: September 16, 2014
    Assignee: Icera Inc.
    Inventors: Abdellatif Bellaouar, Ahmed R. Fridi, Sher Jiun Fang, Hamid Safiri
  • Publication number: 20140051365
    Abstract: A method, device and computer program product is provided for sending a data signal and a clock signal between a radio frequency circuit of a device and a baseband circuit of the device, the radio frequency circuit being configured for at least one of transmission and reception of radio signals in a radio frequency band, where the clock signal has a clock frequency Fc. The method comprises selecting the clock frequency Fc to be a rational multiple of the 0.270833 MHz symbol rate of the Global System for Mobile Communications (GSM) standard and a rational multiple of the 3.84 MHz chipping rate of the Wideband Code Division Multiple Access (WCDMA) interface. The clock frequency Fc is selected such that the clock signal can be generated using a 38.4 MHz or 19.2 MHz reference clock signal, a non-fractional Phase Locked Loop clock multiplier and an output divider, without first having to divide down the reference clock signal.
    Type: Application
    Filed: April 8, 2011
    Publication date: February 20, 2014
    Applicant: NVIDIA TECHNOLOGY UK LIMITED
    Inventors: Abdellatif Bellaouar, Steve Felix, Hamid Safiri
  • Patent number: 8654821
    Abstract: A fractional rate converting filter in a wireless transceiver comprising a delay line, multiplier circuit, adder circuit, and selector. The delay line receives a digital input signal at a first sample rate and has delay blocks each providing an output and receiving samples gated at a plurality of clock cycles of an integer sub-multiple frequency of a clock. The outputs are multiplied by corresponding filter tap coefficients. Each filter tap coefficient is spaced by a first integer Y. The adder circuit receives and sums the tap outputs to provide an output signal. The selector iteratively shifts the coefficients by a second integer Z. The output of each delay block is multiplied by corresponding shifted filter tap coefficients. The delay blocks are inhibited from receiving another input sample during the plurality of clock cycles. The output signal has a second sample rate at the integer sub-multiple frequency of the clock.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: February 18, 2014
    Assignee: ICERA, Inc.
    Inventor: Hamid Safiri
  • Publication number: 20130243053
    Abstract: A fractional rate converting filter in a wireless transceiver comprising a delay line, multiplier circuit, adder circuit, and selector. The delay line receives a digital input signal at a first sample rate and has delay blocks each providing an output and receiving samples gated at a plurality of clock cycles of an integer sub-multiple frequency of a clock. The outputs are multiplied by corresponding filter tap coefficients. Each filter tap coefficient is spaced by a first integer Y. The adder circuit receives and sums the tap outputs to provide an output signal. The selector iteratively shifts the coefficients by a second integer Z. The output of each delay block is multiplied by corresponding shifted filter tap coefficients. The delay blocks are inhibited from receiving another input sample during the plurality of clock cycles. The output signal has a second sample rate at the integer sub-multiple frequency of the clock.
    Type: Application
    Filed: May 17, 2013
    Publication date: September 19, 2013
    Applicant: Icera, Inc.
    Inventor: Hamid Safiri
  • Patent number: 8446935
    Abstract: A method and system for fractionally converting sample rates. Fractional rate conversion for a transmit path of a transceiver is achieved by upsampling an input signal having a first sample rate by a first integer factor, removing aliasing resulting from the upconversion process, and then downsampling the intermediate signal by a second integer factor to provide a final signal having a second sample rate. The first factor and the second factor are selected to obtain a desired output sample rate that is a fraction of the sample rate of the input signal.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: May 21, 2013
    Assignee: Icera, Inc.
    Inventor: Hamid Safiri
  • Publication number: 20110164663
    Abstract: A method and system for fractionally converting sample rates. Fractional rate conversion for a transmit path of a transceiver is achieved by upsampling an input signal having a first sample rate by a first integer factor, removing aliasing resulting from the upconversion process, and then downsampling the intermediate signal by a second integer factor to provide a final signal having a second sample rate. The first factor and the second factor are selected to obtain a desired output sample rate that is a fraction of the sample rate of the input signal.
    Type: Application
    Filed: September 8, 2009
    Publication date: July 7, 2011
    Applicant: ICERA INC.
    Inventor: Hamid Safiri
  • Publication number: 20110163815
    Abstract: A digital frequency synthesizer with an automatic calibration system. The digital frequency synthesizer is calibrated by initiating a coarse tuning operation to rapidly reach a preliminary frequency that is proximate to the desired final frequency. A calibration procedure is then executed for adjusting gain in the frequency synthesizer based on the preliminary frequency. This test involves applying one or more test signals to the frequency synthesizer and measuring a signal generated in the frequency synthesizer. This measured signal corresponds to a gain response of the circuit at the preliminary frequency. When the expected gain is known, any difference relative to the gain of the measured signal is used to adjust the gain in a circuit of the frequency synthesizer such that the actual gain substantially matches the expected gain.
    Type: Application
    Filed: September 8, 2009
    Publication date: July 7, 2011
    Applicant: ICERA INC.
    Inventors: Abdellatif Bellaouar, Ahmed R. Fridi, Sher Jiun Fang, Hamid Safiri
  • Publication number: 20100029228
    Abstract: A power ramping circuit for use in the transmit path of a radio frequency (RF) circuit. The power ramping circuit includes parallel connected transistors used as logarithmic resistor attenuators for adjusting current to a mixer circuit in the transmit path. The parallel connected transistors can be sized differently, and are sequentially turned off to gradually increase the current provided to the mixer circuit. A ramp control circuit controls the parallel connected transistors in response to either an analog signal or a digital signal.
    Type: Application
    Filed: December 20, 2007
    Publication date: February 4, 2010
    Inventors: Alan Holden, Hamid Safiri, Michel J.G.J.P. Frechette, Sherif H.K. Embabi, Abdellatif Bellaouar, Stephen Arnold Devison, Tajinder Manku