Patents by Inventor Hamid Soleimani

Hamid Soleimani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11815492
    Abstract: Aspects of the technology described herein relate to built-in self-testing (BIST) of circuitry (e.g., a pulser or receive circuitry) and/or transducers in an ultrasound device. A BIST circuit may include a transconductance amplifier coupled between a pulser and receive circuitry, a capacitor network coupled between a pulser and receive circuitry, and/or a current source couplable to the input terminal of receive circuitry to which a transducer is also couplable. The collapse voltages of transducers may be characterized using BIST circuitry, and a bias voltage may be applied to the membranes of the transducers based at least in part on their collapse voltages. The capacitances of transducers may also be measured using BIST circuitry and a notification may be generated based on the sets of measurements.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: November 14, 2023
    Assignee: BFLY Operations, Inc.
    Inventors: Chao Chen, Youn-Jae Kook, Jihee Lee, Kailiang Chen, Leung Kin Chiu, Joseph Lutsky, Nevada J. Sanchez, Sebastian Schaetz, Hamid Soleimani
  • Patent number: 11690595
    Abstract: Aspects of the technology described herein relate to wirelessly offloading, from a wearable ultrasound device, ultrasound data sufficient for forming one or more ultrasound images therefrom. The wearable ultrasound device may include an ultrasound patch. Indications that may be monitored with such a device, and therapeutic uses that may be provided by such a device, are also described. Methods and apparatuses are also described for compounding multilines of ultrasound data on an ultrasound device configured to collect the ultrasound data. Additionally, certain aspects of the technology relate to non-uniform grouping of ultrasound transducers that share a transmit/receive circuit in an ultrasound device.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: July 4, 2023
    Assignee: BFLY Operations, Inc
    Inventors: Nevada J. Sanchez, Graham Peyton, Hamid Soleimani
  • Publication number: 20220313207
    Abstract: Ultrasound devices are described. The ultrasound devices may be flexibly configured to output a certain number of multilines per channel of ultrasound data and to process certain channels of ultrasound data per processing cycle. The ultrasound device may then be configured to either output more multilines per channel and process fewer channels per processing cycle, or output fewer multilines per channel and process more channels per processing cycle. In other words, the circuitry may be configured to change to a configuration with increased resolution and increased processing time or to a configuration with decreased resolution and decreased processing time.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 6, 2022
    Applicant: BFLY Operations, Inc.
    Inventors: Hamid Soleimani, Nevada J. Sanchez
  • Publication number: 20210330295
    Abstract: Beamforming circuitry for an ultrasound device is disclosed, that may directly calculate the position in receive line space for an incoming ultrasound data sample given the time of flight (ToF) of that ultrasound data sample. In some embodiments, this may be done without initially buffering the ultrasound data sample received from the particular receive datapath multiplexed to the beamforming circuitry. The beamforming circuitry may then associate the ultrasound data sample with that position in receive line space, and in particular, with a memory address corresponding to that location. Thus, when the beamforming circuitry multiplexes between different receive datapaths, it may not need to buffer ultrasound data samples from different receive datapaths prior to saving the data to memory.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 28, 2021
    Applicant: Butterfly Network, Inc.
    Inventors: Hamid Soleimani, Karl Thiele, Sheng-Wen Huang, Nevada J. Sanchez
  • Publication number: 20210325349
    Abstract: Aspects of the technology described herein relate to built-in self-testing (BIST) of circuitry (e.g., a pulser or receive circuitry) and/or transducers in an ultrasound device. A BIST circuit may include a transconductance amplifier coupled between a pulser and receive circuitry, a capacitor network coupled between a pulser and receive circuitry, and/or a current source couplable to the input terminal of receive circuitry to which a transducer is also couplable. The collapse voltages of transducers may be characterized using BIST circuitry, and a bias voltage may be applied to the membranes of the transducers based at least in part on their collapse voltages. The capacitances of transducers may also be measured using BIST circuitry and a notification may be generated based on the sets of measurements.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 21, 2021
    Applicant: Butterfly Network, Inc.
    Inventors: Chao Chen, Youn-Jae Kook, Jihee Lee, Kailiang Chen, Leung Kin Chiu, Joseph Lutsky, Nevada J. Sanchez, Sebastian Schaetz, Hamid Soleimani
  • Publication number: 20210328564
    Abstract: Aspects of the technology described herein relate to built-in self-testing (BIST) of circuitry (e.g., a pulser or receive circuitry) and/or transducers in an ultrasound device. A BIST circuit may include a transconductance amplifier coupled between a pulser and receive circuitry, a capacitor network coupled between a pulser and receive circuitry, and/or a current source couplable to the input terminal of receive circuitry to which a transducer is also couplable. The collapse voltages of transducers may be characterized using BIST circuitry, and a bias voltage may be applied to the membranes of the transducers based at least in part on their collapse voltages. The capacitances of transducers may also be measured using BIST circuitry and a notification may be generated based on the sets of measurements.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 21, 2021
    Applicant: Butterfly Network, Inc.
    Inventors: Chao Chen, Youn-Jae Kook, Jihee Lee, Kailiang Chen, Leung Kin Chiu, Joseph Lutsky, Nevada J. Sanchez, Sebastian Schaetz, Hamid Soleimani
  • Publication number: 20200315592
    Abstract: An ultrasound probe is provided including one or more ultrasound transducers configured to perform ultrasound imaging, a first logic unit configured to receive ultrasound data from the one or more ultrasound transducers, and a second logic unit coupled to the first logic unit and configured to transmit the ultrasound data wirelessly via a radio module. An ultrasound device is provided configured for removably coupling to an auxiliary module to transmit ultrasound wirelessly via the auxiliary module.
    Type: Application
    Filed: March 31, 2020
    Publication date: October 8, 2020
    Applicant: Butterfly Network, Inc.
    Inventors: Hamid Soleimani, Graham Peyton, Nevada J. Sanchez
  • Publication number: 20200322454
    Abstract: A system comprising an ultrasound device configured to communicate ultrasound data wirelessly to a remote computing device over a wireless communication link, wherein the ultrasound device and the remote computing device implement the wireless communication link using a set of functions to wirelessly transmit the ultrasound data.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 8, 2020
    Inventors: Krishna Ersson, Lawrence Spector, Hamid Soleimani, Graham Peyton
  • Publication number: 20190343484
    Abstract: Aspects of the technology described herein relate to wirelessly offloading, from a wearable ultrasound device, ultrasound data sufficient for forming one or more ultrasound images therefrom. The wearable ultrasound device may include an ultrasound patch. Indications that may be monitored with such a device, and therapeutic uses that may be provided by such a device, are also described. Methods and apparatuses are also described for compounding multilines of ultrasound data on an ultrasound device configured to collect the ultrasound data. Additionally, certain aspects of the technology relate to non-uniform grouping of ultrasound transducers that share a transmit/receive circuit in an ultrasound device.
    Type: Application
    Filed: April 9, 2019
    Publication date: November 14, 2019
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Tyler S. Ralston, Nevada J. Sanchez, John Martin, Graham Peyton, Hamid Soleimani
  • Publication number: 20180233530
    Abstract: An image sensor including a semiconductor layer. A light absorber layer couples with the semiconductor layer at a pixel of the image sensor and absorbs incident light to substantially prevent the incident light from entering the semiconductor layer. The light absorber layer heats a depletion region of the semiconductor layer in response to absorbing the incident light, creating electron/hole pairs. The light absorber layer may include one or more narrow bandgap materials.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Victor LENCHENKOV, Hamid SOLEIMANI
  • Patent number: 9972654
    Abstract: An image sensor including a semiconductor layer. A light absorber layer couples with the semiconductor layer at a pixel of the image sensor and absorbs incident light to substantially prevent the incident light from entering the semiconductor layer. The light absorber layer heats a depletion region of the semiconductor layer in response to absorbing the incident light, creating electron/hole pairs. The light absorber layer may include one or more narrow bandgap materials.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: May 15, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Victor Lenchenkov, Hamid Soleimani
  • Patent number: 9812555
    Abstract: An integrated circuit die may include bottom-gate thin-body transistors. The bottom-gate thin-body transistors may be formed in a thinned-down substrate having a thickness that is defined by shallow trench isolation structures that provide complete well isolation for the transistors. The transistors may include gate terminal contacts formed through the shallow trench isolation structures, bulk terminal contacts that are formed through the thinned substrate and that overlap with the gate contacts, and source-drain terminal contacts with in-situ salicide. Additional metallization layers may be formed over the gate/bulk/source-drain contacts after bonding.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: November 7, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Raminda Madurawe, Hamid Soleimani, Irfan Rahim
  • Patent number: 9584744
    Abstract: An image sensor with an array of image sensor pixels is provided. Each pixel may include a photodiode, a storage diode, and associated circuitry formed in a semiconductor substrate. Buried light shields may be formed on the substrate to prevent regions between two adjacent photodiodes from being exposed to incoming light. In one embodiment, a shallow trench isolation (STI) structure may be formed between the photodiode and the storage diode, and a conductive layer formed from optically absorptive material may be constructed at the bottom of the STI structure. A via may be formed through the STI structure to help bias the conductive layer using a ground or negative voltage. In another embodiment, an isolation ring structure may be formed at the base of the buried light shields. The isolation ring structure may be formed from optically absorptive material and can optionally be biased using a ground or negative voltage.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: February 28, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Victor Lenchenkov, Hamid Soleimani
  • Publication number: 20160381310
    Abstract: An image sensor with an array of image sensor pixels is provided. Each pixel may include a photodiode, a storage diode, and associated circuitry formed in a semiconductor substrate. Buried light shields may be formed on the substrate to prevent regions between two adjacent photodiodes from being exposed to incoming light. In one embodiment, a shallow trench isolation (STI) structure may be formed between the photodiode and the storage diode, and a conductive layer formed from optically absorptive material may be constructed at the bottom of the STI structure. A via may be formed through the STI structure to help bias the conductive layer using a ground or negative voltage. In another embodiment, an isolation ring structure may be formed at the base of the buried light shields. The isolation ring structure may be formed from optically absorptive material and can optionally be biased using a ground or negative voltage.
    Type: Application
    Filed: June 23, 2015
    Publication date: December 29, 2016
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Victor LENCHENKOV, Hamid SOLEIMANI
  • Publication number: 20160351616
    Abstract: An image sensor including a semiconductor layer. A light absorber layer couples with the semiconductor layer at a pixel of the image sensor and absorbs incident light to substantially prevent the incident light from entering the semiconductor layer. The light absorber layer heats a depletion region of the semiconductor layer in response to absorbing the incident light, creating electron/hole pairs. The light absorber layer may include one or more narrow bandgap materials.
    Type: Application
    Filed: August 5, 2016
    Publication date: December 1, 2016
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Victor LENCHENKOV, Hamid SOLEIMANI
  • Publication number: 20160353038
    Abstract: An integrated circuit die may include bottom-gate thin-body transistors. The bottom-gate thin-body transistors may be formed in a thinned-down substrate having a thickness that is defined by shallow trench isolation structures that provide complete well isolation for the transistors. The transistors may include gate terminal contacts formed through the shallow trench isolation structures, bulk terminal contacts that are formed through the thinned substrate and that overlap with the gate contacts, and source-drain terminal contacts with in-situ salicide. Additional metallization layers may be formed over the gate/bulk/source-drain contacts after bonding.
    Type: Application
    Filed: May 28, 2015
    Publication date: December 1, 2016
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Raminda MADURAWE, Hamid SOLEIMANI, Irfan RAHIM
  • Patent number: 9431443
    Abstract: An image sensor including a semiconductor layer. A light absorber layer couples with the semiconductor layer at a pixel of the image sensor and absorbs incident light to substantially prevent the incident light from entering the semiconductor layer. The light absorber layer heats a depletion region of the semiconductor layer in response to absorbing the incident light, creating electron/hole pairs. The light absorber layer may include one or more narrow bandgap materials.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: August 30, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Victor Lenchenkov, Hamid Soleimani