Patents by Inventor Hamid Tavassoli

Hamid Tavassoli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220254606
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 11, 2022
    Inventors: James D. CARDUCCI, Hamid TAVASSOLI, Ajit BALAKRISHNA, Zhigang CHEN, Andrew NGUYEN, Douglas A. BUCHBERGER, JR., Kartik RAMASWAMY, SHAHID RAUF, Kenneth S. COLLINS
  • Patent number: 11315760
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: April 26, 2022
    Assignee: Applied Materials, Inc.
    Inventors: James D. Carducci, Hamid Tavassoli, Ajit Balakrishna, Zhigang Chen, Andrew Nguyen, Douglas A. Buchberger, Jr., Kartik Ramaswamy, Shahid Rauf, Kenneth S. Collins
  • Patent number: 10704147
    Abstract: Embodiments of the present disclosure are directed process kits for use with an in-chamber heater and substrate rotating mechanism. In some embodiments consistent with the present disclosure, a process kit for use with a rotatable substrate support heater pedestal for supporting a substrate in a process chamber may include an upper edge ring including a top ledge and a skirt the extends downward from the top ledge, a lower edge ring that at least partially supports the upper edge ring and aligns the upper edge ring with the substrate support heater pedestal, a bottom plate disposed on a bottom of the process chamber that supports the upper edge ring when the substrate support heater pedestal is in a lowered non-processing position, and a shadow ring that couples with the upper edge ring when the substrate support heater pedestal is in a raised processing position.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: July 7, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhammad M. Rasheed, Muhannad Mustafa, Hamid Tavassoli, Steven V Sansoni, Cheng-Hsiung Tsai, Vikash Banthia
  • Patent number: 10697057
    Abstract: Embodiments of collimators and process chambers incorporating same are provided herein. In some embodiments, a collimator for use in a substrate processing chamber includes a ring; an adapter surrounding the ring and having an inner annular wall; and a plurality of spokes extending from the inner annular wall and intersecting at a central axis of the collimator.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: June 30, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Goichi Yoshidome, Keith A. Miller, Hamid Tavassoli, Andrew Tomko
  • Publication number: 20200185192
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Application
    Filed: February 14, 2020
    Publication date: June 11, 2020
    Inventors: James D. CARDUCCI, Hamid TAVASSOLI, Ajit BALAKRISHNA, Zhigang CHEN, Andrew NGUYEN, Douglas A. BUCHBERGER, JR., Kartik RAMASWAMY, Shahid RAUF, Kenneth S. COLLINS
  • Patent number: 10615006
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: April 7, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: James D. Carducci, Hamid Tavassoli, Ajit Balakrishna, Zhigang Chen, Andrew Nguyen, Douglas A. Buchberger, Jr., Kartik Ramaswamy, Shahid Rauf, Kenneth S. Collins
  • Patent number: 10580620
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 3, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: James D. Carducci, Hamid Tavassoli, Ajit Balakrishna, Zhigang Chen, Andrew Nguyen, Douglas A. Buchberger, Jr., Kartik Ramaswamy, Shahid Rauf, Kenneth S. Collins
  • Patent number: 10546728
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: James D. Carducci, Hamid Tavassoli, Ajit Balakrishna, Zhigang Chen, Andrew Nguyen, Douglas A. Buchberger, Jr., Kartik Ramaswamy, Shahid Rauf, Kenneth S. Collins
  • Patent number: 10537013
    Abstract: Embodiments of the invention include an apparatus, system, and method for cooling a pedestal for supporting a workpiece during plasma processing. An embodiment of a pedestal includes: a base over which the workpiece is to be disposed, a plurality of nozzles to supply a fluid from a supply plenum to impinge on a surface of the base, and a plurality of return conduits to return the supplied fluid to a return plenum. The fluid to be supplied by the plurality of nozzles can be projected as one or more jets submerged in surrounding fluid or as a spray that emerges from a surrounding fluid within a volume between the plurality of nozzles and the base to impinge on the surface of the base.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: January 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Fernando Silveira, Richard Fovell, Hamid Tavassoli
  • Patent number: 10535502
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: James D. Carducci, Hamid Tavassoli, Ajit Balakrishna, Zhigang Chen, Andrew Nguyen, Douglas A. Buchberger, Jr., Kartik Ramaswamy, Shahid Rauf, Kenneth S. Collins
  • Patent number: 10453656
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 22, 2019
    Assignee: Applied Materials, Inc.
    Inventors: James D. Carducci, Hamid Tavassoli, Ajit Balakrishna, Zhigang Chen, Andrew Nguyen, Douglas A. Buchberger, Jr., Kartik Ramaswamy, Shahid Rauf, Kenneth S. Collins
  • Patent number: 10386126
    Abstract: Apparatus for controlling the thermal uniformity of a substrate can control the thermal uniformity of the substrate to be more uniform or to be non-uniform. In some embodiments, an apparatus for controlling the thermal uniformity of a substrate includes: a substrate support having a support surface to support a substrate thereon. A flow path is disposed within the substrate support to flow a heat transfer fluid beneath the support surface. The flow path comprises a first portion and a second portion, each portion having a substantially equivalent axial length. The first portion is spaced about 2 mm to about 10 mm from the second portion. The first portion provides a flow of heat transfer fluid in a direction opposite a flow of heat transfer fluid of the second portion.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: August 20, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kallol Bera, Xiaoping Zhou, Douglas A. Buchberger, Jr., Andrew Nguyen, Hamid Tavassoli, Surajit Kumar, Shahid Rauf
  • Publication number: 20180155838
    Abstract: Embodiments of the present disclosure are directed process kits for use with an in-chamber heater and substrate rotating mechanism. In some embodiments consistent with the present disclosure, a process kit for use with a rotatable substrate support heater pedestal for supporting a substrate in a process chamber may include an upper edge ring including a top ledge and a skirt the extends downward from the top ledge, a lower edge ring that at least partially supports the upper edge ring and aligns the upper edge ring with the substrate support heater pedestal, a bottom plate disposed on a bottom of the process chamber that supports the upper edge ring when the substrate support heater pedestal is in a lowered non-processing position, and a shadow ring that couples with the upper edge ring when the substrate support heater pedestal is in a raised processing position.
    Type: Application
    Filed: February 1, 2017
    Publication date: June 7, 2018
    Inventors: Muhammad M. RASHEED, Muhannad MUSTAFA, Hamid TAVASSOLI, Steven V. SANSONI, Cheng-Hsiung TSAI, Vikash Banthia
  • Publication number: 20180142342
    Abstract: Embodiments of collimators and process chambers incorporating same are provided herein. In some embodiments, a collimator for use in a substrate processing chamber includes a ring; an adapter surrounding the ring and having an inner annular wall; and a plurality of spokes extending from the inner annular wall and intersecting at a central axis of the collimator.
    Type: Application
    Filed: November 16, 2017
    Publication date: May 24, 2018
    Inventors: GOICHI YOSHIDOME, KEITH A. MILLER, HAMID TAVASSOLI, ANDREW TOMKO
  • Publication number: 20180053631
    Abstract: The disclosure concerns a method of operating a plasma reactor having an electron beam plasma source for independently adjusting electron beam energy, plasma ion energy and radical population. The disclosure further concerns an electron beam source for a plasma reactor having an RF-driven electrode for producing the electron beam.
    Type: Application
    Filed: October 13, 2017
    Publication date: February 22, 2018
    Inventors: Leonid Dorf, Kenneth S. Collins, Shahid Rauf, Kartik Ramaswamy, James D. Carducci, Hamid Tavassoli, Olga Regelman, Ying Zhang
  • Patent number: 9799491
    Abstract: The disclosure concerns a method of operating a plasma reactor having an electron beam plasma source for independently adjusting electron beam energy, plasma ion energy and radical population. The disclosure further concerns an electron beam source for a plasma reactor having an RF-driven electrode for producing the electron beam.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: October 24, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Leonid Dorf, Kenneth S. Collins, Shahid Rauf, Kartik Ramaswamy, James D. Carducci, Hamid Tavassoli, Olga Regelman, Ying Zhang
  • Publication number: 20170271129
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Application
    Filed: June 1, 2017
    Publication date: September 21, 2017
    Inventors: James D. CARDUCCI, Hamid TAVASSOLI, Ajit BALAKRISHNA, Zhigang CHEN, Andrew NGUYEN, Douglas A. BUCHBERGER, JR., Kartik RAMASWAMY, Shahid RAUF, Kenneth S. COLLINS
  • Patent number: 9741546
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: August 22, 2017
    Assignee: Applied Materials, Inc.
    Inventors: James D. Carducci, Hamid Tavassoli, Ajit Balakrishna, Zhigang Chen, Andrew Nguyen, Douglas A. Buchberger, Jr., Kartik Ramaswamy, Shahid Rauf, Kenneth S. Collins
  • Publication number: 20170125217
    Abstract: The disclosure concerns a method of operating a plasma reactor having an electron beam plasma source for independently adjusting electron beam energy, plasma ion energy and radical population. The disclosure further concerns an electron beam source for a plasma reactor having an RF-driven electrode for producing the electron beam.
    Type: Application
    Filed: May 4, 2016
    Publication date: May 4, 2017
    Inventors: Leonid Dorf, Kenneth S. Collins, Shahid Rauf, Kartik Ramaswamy, James D. Carducci, Hamid Tavassoli, Olga Regelman, Ying Zhang
  • Patent number: 9564297
    Abstract: In a plasma reactor for processing a workpiece, an electron beam is employed as the plasma source, and a remote radical source is incorporated with the process chamber.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: February 7, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Ming-Feng Wu, Leonid Dorf, Shahid Rauf, Ying Zhang, Kenneth S. Collins, Hamid Tavassoli, Kartik Ramaswamy, Steven Lane