Patents by Inventor Hamit Duran

Hamit Duran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11823996
    Abstract: The present disclosure relates to a semiconductor module, especially a power semiconductor module, in which the heat dissipation is improved and the power density is increased. The semiconductor module may include at least two electrically insulating substrates, each having a first main surface and a second main surface opposite to the first main surface. On the first main surface of each of the substrates, at least one semiconductor device is mounted. An external terminal is connected to the first main surface of at least one of the substrates. The substrates are arranged opposite to each other so that their first main surfaces are facing each other.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: November 21, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Hamit Duran, Junfu Hu
  • Publication number: 20220148959
    Abstract: The present disclosure relates to a semiconductor module, especially a power semiconductor module, in which the heat dissipation is improved and the power density is increased. The semiconductor module may include at least two electrically insulating substrates, each having a first main surface and a second main surface opposite to the first main surface. On the first main surface of each of the substrates, at least one semiconductor device is mounted. An external terminal is connected to the first main surface of at least one of the substrates. The substrates are arranged opposite to each other so that their first main surfaces are facing each other.
    Type: Application
    Filed: January 21, 2022
    Publication date: May 12, 2022
    Inventors: Hamit DURAN, Junfu HU
  • Patent number: 11251116
    Abstract: The present disclosure relates to a semiconductor module, especially a power semiconductor module, in which the heat dissipation is improved and the power density is increased. The semiconductor module may include at least two electrically insulating substrates, each having a first main surface and a second main surface opposite to the first main surface. On the first main surface of each of the substrates, at least one semiconductor device is mounted. An external terminal is connected to the first main surface of at least one of the substrates. The substrates are arranged opposite to each other so that their first main surfaces are facing each other.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: February 15, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Hamit Duran, Junfu Hu
  • Publication number: 20200194364
    Abstract: The present disclosure relates to a semiconductor module, especially a power semiconductor module, in which the heat dissipation is improved and the power density is increased. The semiconductor module may include at least two electrically insulating substrates, each having a first main surface and a second main surface opposite to the first main surface. On the first main surface of each of the substrates, at least one semiconductor device is mounted. An external terminal is connected to the first main surface of at least one of the substrates. The substrates are arranged opposite to each other so that their first main surfaces are facing each other.
    Type: Application
    Filed: February 24, 2020
    Publication date: June 18, 2020
    Inventors: Hamit DURAN, Junfu HU
  • Patent number: 9601399
    Abstract: A module arrangement for power semiconductor devices, including one or more power semiconductor modules, wherein the one or more power semiconductor modules include a substrate with a first surface and a second surface being arranged opposite to the first surface, wherein the substrate is at least partially electrically insulating, wherein a conductive structure is arranged at the first surface of the substrate, wherein at least one power semiconductor device is arranged on the conductive structure and electrically connected thereto, wherein the one or more modules includes an inner volume for receiving the at least one power semiconductor device which volume is hermetically sealed from its surrounding by a module enclosure, wherein the module arrangement includes an arrangement enclosure at least partly defining a volume for receiving the one or more modules, and wherein the arrangement enclosure seals covers the volume.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: March 21, 2017
    Assignee: ABB Schweiz AG
    Inventors: Munaf Rahimo, Hamit Duran
  • Publication number: 20160049342
    Abstract: A module arrangement for power semiconductor devices, including one or more power semiconductor modules, wherein the one or more power semiconductor modules include a substrate with a first surface and a second surface being arranged opposite to the first surface, wherein the substrate is at least partially electrically insulating, wherein a conductive structure is arranged at the first surface of the substrate, wherein at least one power semiconductor device is arranged on the conductive structure and electrically connected thereto, wherein the one or more modules includes an inner volume for receiving the at least one power semiconductor device which volume is hermetically sealed from its surrounding by a module enclosure, wherein the module arrangement includes an arrangement enclosure at least partly defining a volume for receiving the one or more modules, and wherein the arrangement enclosure seals covers the volume.
    Type: Application
    Filed: October 29, 2015
    Publication date: February 18, 2016
    Inventors: Munaf Rahimo, Hamit Duran
  • Publication number: 20140055888
    Abstract: A power module (10), which is operated serially with other similar power modules in a converter valve, comprises a plurality of submodules (13a-d) connected in parallel, wherein each of the submodules includes one or several semiconductor elements connected in parallel and the power kind module is of the kind wherein if one of the submodules starts malfunctioning, the remaining ones of the submodules assume a closed circuit. The power module further comprises, for each of the submodules, a separate driver unit (14a-d) for driving the one or several semiconductor elements of that submodule, and a separate control unit (11a-d) for controlling the driver unit of that submodule. The power module may be used in HVDC or SVC apparatuses.
    Type: Application
    Filed: May 10, 2011
    Publication date: February 27, 2014
    Applicant: ABB RESEARCH LTD
    Inventors: Filippo Chimento, Georgios Demetriades, Hamit Duran
  • Patent number: 8405992
    Abstract: A power-electronic arrangement comprising semiconductor components (102, 103, 107), a heat exchanger (110), and an electrically conductive element (109) is presented. The heat exchanger comprises evaporator channels (111) and condenser channels (112) for working fluid. The electrically conductive element comprises a contact surface providing a thermal contact to outer surfaces of walls of the evaporator channels for transferring heat from the electrically conductive element to the evaporator channels. A main current terminal of each semiconductor component is bonded to the electrically conductive element which thus forms a part of a main current circuitry of a power system. As the main current terminal is directly bonded to the electrically conductive element cooled with the heat exchanger, the temperature gradients inside the semiconductor components can be kept moderate, and thus the temperatures inside the semiconductor components can be limited.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: March 26, 2013
    Assignee: ABB Research Ltd.
    Inventors: Berk Yesin, Bruno Agostini, Christoph Haederli, Chunlei Liu, Francesco Agostini, Hamit Duran, Slavo Kicin
  • Patent number: 8395244
    Abstract: A fast recovery diode includes an n-doped base layer having a cathode side and an anode side opposite the cathode side. A p-doped anode layer is arranged on the anode side. The anode layer has a doping profile and includes at least two sublayers. A first one of the sublayers has a first maximum doping concentration, which is between 2*1016 cm?3 and 2*1017 cm?3 and which is higher than the maximum doping concentration of any other sublayer. A last one of the sublayers has a last sublayer depth, which is larger than any other sublayer depth. The last sublayer depth is between 90 to 120 ?m. The doping profile of the anode layer declines such that a doping concentration in a range of 5*1014 cm?3 and 1*1015 cm?3 is reached between a first depth, which is at least 20 ?m, and a second depth, which is at maximum 50 ?m. Such a profile of the doping concentration is achieved by using aluminum diffused layers as the at least two sublayers.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: March 12, 2013
    Assignee: ABB Technology AG
    Inventors: Jan Vobecky, Kati Hemmann, Hamit Duran, Munaf Rahimo
  • Publication number: 20110108953
    Abstract: A fast recovery diode includes an n-doped base layer having a cathode side and an anode side opposite the cathode side. A p-doped anode layer is arranged on the anode side. The anode layer has a doping profile and includes at least two sublayers. A first one of the sublayers has a first maximum doping concentration, which is between 2*1016 cm?3 and 2*1017 cm?3 and which is higher than the maximum doping concentration of any other sublayer. A last one of the sublayers has a last sublayer depth, which is larger than any other sublayer depth. The last sublayer depth is between 90 to 120 ?m. The doping profile of the anode layer declines such that a doping concentration in a range of 5*1014 cm?3 and 1*1015 cm?3 is reached between a first depth, which is at least 20 ?m, and a second depth, which is at maximum 50 ?m. Such a profile of the doping concentration is achieved by using aluminium diffused layers as the at least two sublayers.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 12, 2011
    Applicant: ABB Technology AG
    Inventors: Jan VOBECKY, Kati Hemmann, Hamit Duran, Munaf Rahimo
  • Publication number: 20110080711
    Abstract: A power-electronic arrangement comprising semiconductor components (102, 103, 107), a heat exchanger (110), and an electrically conductive element (109) is presented. The heat exchanger comprises evaporator channels (111) and condenser channels (112) for working fluid. The electrically conductive element comprises a contact surface providing a thermal contact to outer surfaces of walls of the evaporator channels for transferring heat from the electrically conductive element to the evaporator channels. A main current terminal of each semiconductor component is bonded to the electrically conductive element which thus forms a part of a main current circuitry of a power system. As the main current terminal is directly bonded to the electrically conductive element cooled with the heat exchanger, the temperature gradients inside the semiconductor components can be kept moderate, and thus the temperatures inside the semiconductor components can be limited.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 7, 2011
    Applicant: ABB RESEARCH LTD.
    Inventors: Berk YESIN, Bruno AGOSTINI, Christoph HAEDERLI, Chunlei LIU, Francesco AGOSTINI, Hamit DURAN, Slavo KICIN