Patents by Inventor Hamza Yilmaz

Hamza Yilmaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8680611
    Abstract: In accordance with an embodiment a structure can include a monolithically integrated trench field-effect transistor (FET) and Schottky diode. The structure can include a first gate trench extending into a semiconductor region, a second gate trench extending into the semiconductor region, and a source region flanking a side of the first gate trench. The source region can have a substantially triangular shape, and a contact opening extending into the semiconductor region between the first gate trench and the second gate trench. The structure can include a conductor layer disposed in the contact opening to electrically contact the source region along at least a portion of a slanted sidewall of the source region, and the semiconductor region along a bottom portion of the contact opening. The conductor layer can form a Schottky contact with the semiconductor region.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 25, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Christopher Boguslaw Kocon, Steven Sapp, Paul Thorup, Dean Probst, Robert Herrick, Becky Losee, Hamza Yilmaz, Christopher Lawrence Rexer, Daniel Calafut
  • Publication number: 20140073098
    Abstract: A method for forming a Schottky diode including forming first and second trenches in a semiconductor layer, forming a thin dielectric layer lining sidewalls of the first and second trenches; forming a trench conductor layer in the first and second trenches where the trench conductor layer fills a portion of each of the first and second trenches and being the only one trench conductor layer in the first and second trenches; forming a first dielectric layer in the first and second trenches to fill the remaining portions of the first and second trenches; and forming a Schottky metal layer on a top surface of the lightly doped semiconductor layer between the first trench and the second trench to form a Schottky junction. The Schottky diode is formed with the Schottky metal layer as the anode and the lightly doped semiconductor layer between the first and second trenches as the cathode.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 13, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Daniel Calafut, Yi Su, Jongoh Kim, Hong Chang, Hamza Yilmaz, Daniel S. Ng
  • Patent number: 8669650
    Abstract: A semiconductor device package comprises a lead frame having a die paddle comprising a first chip installation area and a second chip installation area, a recess area formed in the first chip installation area, and multiple metal pillars formed in the recess area, a notch divides the first chip installation area into a transverse base extending transversely and a longitudinal base extending longitudinally, and separates the recess area into a transverse recess part formed in the transverse base and a longitudinal recess part formed in longitudinal base; a portion of a transverse extending part connecting to an external pin extends into a portion inside of the notch.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 11, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Xiaotian Zhang, Hamza Yilmaz, Jun Lu, Xiaoguang Zeng, Ming-Chen Lu
  • Patent number: 8664728
    Abstract: A transistor includes a substrate, a well formed in the substrate, a drain including a first impurity region implanted in the well, a source including a second impurity region implanted in the well and spaced apart from the first impurity region, a channel for current flow from the drain to the source, and a gate to control a depletion region between the source and the drain The channel has an intrinsic breakdown voltage, and the well, drain and source are configured to provide an extrinsic breakdown voltage lower than the intrinsic breakdown voltage and such that breakdown occurs in a breakdown region in the well located outside the channel and adjacent the drain or the source.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: March 4, 2014
    Assignee: Volterra Semiconductor Corporation
    Inventors: Yang Lu, Budong You, Marco A. Zuniga, Hamza Yilmaz
  • Publication number: 20140054691
    Abstract: A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches includes a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.
    Type: Application
    Filed: October 31, 2013
    Publication date: February 27, 2014
    Applicant: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Publication number: 20140054758
    Abstract: The present invention is directed to a lead-frame having a stack of semiconductor dies with interposed metalized clip structure. Level projections extend from the clip structure to ensure that the clip structure remains level during fabrication.
    Type: Application
    Filed: November 4, 2013
    Publication date: February 27, 2014
    Applicant: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Hamza Yilmaz, Xiaotian Zhang, Yan Xun Xue, Anup Bhalla, Jun Lu, Kai Liu, Yueh-Se So, John Amato
  • Publication number: 20140042490
    Abstract: Semiconductor devices are formed using a thin epitaxial layer (nanotube) formed on sidewalls of dielectric-filled trenches. In one embodiment, a semiconductor device is formed in a first semiconductor layer having trenches and mesas formed thereon where the trenches extend from the top surface to the bottom surface of the first semiconductor layer. The semiconductor device includes semiconductor regions formed on the bottom surface of the mesas of the first semiconductor layer.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 13, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Publication number: 20140035116
    Abstract: A semiconductor package and it manufacturing method includes a lead frame having a die pad, and a source lead with substantially a V groove disposed on a top surface. A semiconductor chip disposed on the die pad. A metal plate connected to a top surface electrode of the chip having a bent extension terminated in the V groove in contact with at least one of the V groove sidewalls.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 6, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Yan Xun Xue, Yueh-Se Ho, Hamza Yilmaz, Anup Bhalla, Jun Lu, Kai Liu
  • Patent number: 8642385
    Abstract: The present invention proposes a package for semiconductor device and the fabrication method for integrally encapsulating a whole semiconductor chip within a molding compound. In the semicondcutor device package, bonding pads distributed on the top of the chip are redistributed into an array of redistributed bonding pads located in an dielectric layer by utilizing the redistribution technique. The electrodes or signal terminals on the top of the semiconductor chip are connected to an electrode metal segment on the bottom of the chip by conductive materials filled in through holes formed in a silicon substrate of a semiconductor wafer. Furthermore, the top molding portion and the bottom molding portion seal the semiconductor chip completely, thus providing optimum mechanical and electrical protections.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: February 4, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Ping Huang, Yueh-Se Ho, Hamza Yilmaz, Jun Lu, Ming-Chen Lu
  • Publication number: 20140027841
    Abstract: A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Publication number: 20140027840
    Abstract: The present disclosure describes a termination structure for a high voltage semiconductor transistor device. The termination structure is composed of at least two termination zones and an electrical disconnection between the body layer and the edge of the device. A first zone is configured to spread the electric field within the device. A second zone is configured to smoothly bring the electric field back up to the top surface of the device. The electrical disconnection prevents the device from short circuiting the edge of the device. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Anup Bhalla, Hamza Yilmaz
  • Publication number: 20130341689
    Abstract: Self-aligned charge balanced semiconductor devices and methods for forming such devices are disclosed. One or more planar gates are formed over a semiconductor substrate of a first conductivity type. One or more deep trenches are etched in the semiconductor self-aligned to the planar gates. The trenches are filled with a semiconductor material of a second conductivity type such that the deep trenches are charge balanced with the adjacent regions of the semiconductor substrate Source and body regions are formed by implanting dopants onto the filled trenches. This process can form self-aligned charge balanced devices with a cell pitch less than 12 microns.
    Type: Application
    Filed: August 26, 2013
    Publication date: December 26, 2013
    Applicant: Alpha & Omega Semiconductor Incorporated
    Inventors: John Chen, Yeeheng Lee, Lingpeng Guan, Moses Ho, Wilson Ma, Anup Bhalla, Hamza Yilmaz
  • Patent number: 8610235
    Abstract: A Schottky diode includes a semiconductor layer formed on a semiconductor substrate; first and second trenches formed in the semiconductor layer where the first and second trenches are lined with a thin dielectric layer and being filled partially with a trench conductor layer and remaining portions of the first and second trenches are filled with a first dielectric layer; and a Schottky metal layer formed on a top surface of the semiconductor layer between the first trench and the second trench. The Schottky diode is formed with the Schottky metal layer as the anode and the semiconductor layer between the first and second trenches as the cathode. The trench conductor layer in each of the first and second trenches is electrically connected to the anode of the Schottky diode. In one embodiment, the Schottky diode is formed integrated with a trench field effect transistor on the same semiconductor substrate.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 17, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Daniel Calafut, Yi Su, Jongoh Kim, Hong Chang, Hamza Yilmaz, Daniel S. Ng
  • Patent number: 8598623
    Abstract: A termination structure for a semiconductor device includes an array of termination cells formed using a thin epitaxial layer (nanotube) formed on sidewalls of dielectric-filled trenches. In other embodiments, semiconductor devices are formed using a thin epitaxial layer (nanotube) formed on sidewalls of dielectric-filled trenches.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: December 3, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Patent number: 8592895
    Abstract: A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches includes a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: November 26, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Patent number: 8586414
    Abstract: A semiconductor package and it manufacturing method includes a lead frame having a die pad, and a source lead with substantially a V groove disposed on a top surface. A semiconductor chip disposed on the die pad. A metal plate connected to a top surface electrode of the chip having a bent extension terminated in the V groove in contact with at least one of the V groove sidewalls.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: November 19, 2013
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Yueh-Se Ho, Hamza Yilmaz, Anup Bhalla, Jun Lu, Kal Liu
  • Patent number: 8581376
    Abstract: The present invention is directed to a lead-frame having a stack of semiconductor dies with interposed metalized clip structure. Level projections extend from the clip structure to ensure that the clip structure remains level during fabrication.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: November 12, 2013
    Assignee: Alpha & Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Xiaotian Zhang, Yan Xun Xue, Anup Bhalla, Jun Lu, Kai Liu, Yueh-Se Ho, John Amato
  • Patent number: 8575685
    Abstract: This invention discloses a semiconductor power device formed in a semiconductor substrate comprises a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region. The semiconductor power device further comprises a body region, a source region and a gate disposed near the top surface of the semiconductor substrate and a drain disposed at a bottom surface of the semiconductor substrate. The semiconductor power device further comprises source trenches opened into the highly doped region filled with a conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises a buried field ring regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: November 5, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Lingpeng Guan, Jun Hu
  • Patent number: 8575695
    Abstract: This invention discloses configurations and methods to manufacture lateral power device including a super-junction structure with an avalanche clamp diode formed between the drain and the gate. The lateral super-junction structure reduces on-resistance, while the structural enhancements, including an avalanche clamping diode and an N buffer region, increase the breakdown voltage between substrate and drain and improve unclamped inductive switching (UIS) performance.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: November 5, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Wilson Ma, Lingpeng Guan, Yeeheng Lee, John Chen
  • Patent number: 8563361
    Abstract: A WLCSP method comprises: depositing a metal bump on bonding pads of chips; forming a first packaging layer at front surface of wafer to cover metal bumps while forming an un-covered ring at the edge of wafer to expose the ends of each scribe line located between two adjacent chips; thinning first packaging layer to expose metal bumps; forming a groove on front surface of first packaging layer along each scribe line by cutting along a straight line extended by two ends of scribe line exposed on front surface of un-covered ring; grinding back surface of wafer to form a recessed space and a support ring at the edge of the wafer; depositing a metal layer at bottom surface of wafer in recessed space; cutting off the edge portion of wafer; and separating individual chips from wafer by cutting through first packaging layer, the wafer and metal layer along groove.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: October 22, 2013
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Hamza Yilmaz, Yueh-Se Ho, Jun Lu, Ping Huang, Lei Shi, Lei Duan, Yuping Gong