Patents by Inventor Han-Chang Shih

Han-Chang Shih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080213588
    Abstract: A uniform composite nanofiber includes a tubular first nanofiber, and a second nanofiber formed inside or outside the first nanofiber. The first nanofiber is first formed within a plurality of nano-scale pores of a template placed on a current collector, and then the second nanofiber is formed on inner or outer surface of the first nanofiber, and the template is removed afterwards for obtaining the composite nanofiber.
    Type: Application
    Filed: August 8, 2007
    Publication date: September 4, 2008
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Hsiu-Wu Huang, Yue-Hao Huang, Hung-Hsiao Lin, Mao-Huang Liu, Shih-Chieh Liao, Han-Chang Shih
  • Patent number: 7323218
    Abstract: Methods of fabricating one-dimensional composite nanofiber on a template membrane with porous array by chemical or physical process are disclosed. The whole procedures are established under a base concept of “secondary template”. First of all, tubular first nanofibers are grown up in the pores of the template membrane. Next, by using the hollow first nanofibers as the secondary templates, second nanofibers are produced therein. Finally, the template membrane is removed to obtain composite nanofibers. Showing superior performance in weight energy density, current discharge efficiency and irreversible capacity, the composite nanofibers are applied to extensive scopes like thin-film battery, hydrogen storage, molecular sieving, biosensor and catalyst support in addition to applications in lithium batteries.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: January 29, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Hsiu-Wen Huang, Yue-Hao Huang, Hung-Hsiao Lin, Mao-Huang Liu, Shih-Chieh Liao, Han-Chang Shih
  • Publication number: 20060040065
    Abstract: A method for surface activation on the metallization of electronic devices is provided. It uses plasma-immersion ion implantation and electroless plating to implant the seeds onto the diffusion barrier layer as catalyst for the electroless Cu plating to accomplish the ULSI interconnect metallization. It achieves electroless Cu plating in the deep 100 nm scaled line-width ULSI interconnect metallization by the Pd plasma implantation catalytic treatment. The method can fill the 100 nm line-width vias and trenches for gaining high quality electroless plated metal interconnects, and substitute for the traditional wet activation by SnCl2 and PdCl2 solution. For the plasma implanted seeds and electroless copper techniques, good Cu step coverage and gap-filling capability are observed in the trench and via metallization process with high adhesive strength. After thermal treatment, no obvious interfacial diffusion induced electric failure is found in the interface of the Cu/(implanted Pd)/TaN/FSG assembly.
    Type: Application
    Filed: August 19, 2004
    Publication date: February 23, 2006
    Inventors: Han-Chang Shih, Jian-Hong Lin, Wei-Jen Hsieh, Yi-Ying Tsai, Uei-Shin Chen
  • Publication number: 20040126649
    Abstract: A low-cost, simple method for manufacturing highly-ordered nanofibers is provided. The feature of the procedure is using a self-catalytic mechanism. First of all, a porous membrane template is used as a filter to spread metal nanoparticles, which have a self-catalytic characteristic, onto a current collector. After removing, the membrane template, the nanoparticles grow and become highly-ordered nanofibers by heat treatment in an oxygen atmosphere. The nanofibers show superior field emission effects and are therefore ideal field emission sources.
    Type: Application
    Filed: April 1, 2003
    Publication date: July 1, 2004
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Yue-Hao Huang, Hung-Hsiao Lin, Han-Chang Shih
  • Publication number: 20040126305
    Abstract: Methods of fabricating one-dimensional composite nanofiber on a template membrane with porous array by chemical or physical process are disclosed. The whole procedures are established under a base concept of “secondary template”. First of all, tubular first nanofibers are grown up in the pores of the template membrane. Next, by using the hollow first nanofibers as the secondary templates, second nanofibers are produced therein. Finally, the template membrane is removed to obtain composite nanofibers. Showing superior performance in weight energy density, current discharge efficiency and irreversible capacity, the composite nanofibers are applied to extensive scopes like thin-film battery, hydrogen storage, molecular sieving, biosensor and catalyst support except applications in lithium batteries.
    Type: Application
    Filed: April 21, 2003
    Publication date: July 1, 2004
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Hsiu-Wen Huang, Yue-Hao Huang, Hung-Hsiao Lin, Mao-Huang Liu, Shih-Chieh Liao, Han-Chang Shih
  • Patent number: 6346303
    Abstract: The present invention provides a process for synthesizing one-dimensional nanosubstances. A membrane having channels serves as the host material for the synthesis. The anodic membrance is brought into contact with a microwave excited plasma of a precursor gas using an electron cyclotron resonance chemical vapor deposition (ECR-CVD) system. Parallel aligned nanosubstances can be synthesized in the channels of the membrane over a large area. Carbon nitride nanosubstances are synthesized successfully for the first time in the present invention.
    Type: Grant
    Filed: May 14, 1999
    Date of Patent: February 12, 2002
    Inventors: Han-Chang Shih, Shing-Li Sung, Shang-Hua Tsai
  • Patent number: 6060415
    Abstract: The present invention provides a molecular sieve composite membrane, which includes an anodic alumina membrane as a support and the uni-directionally oriented molecular sieve membrane grown in situ on the anodic alumina membrane. The close packing transitional metal containing aluminophosphate AFI molecular sieve crystals have successfully been grown on the anodic alumina. The molecular sieve phase bounded strongly and anchored into the anodic alumina membrane. Besides, the specific cylindrical channels of the anodic alumina membrane provides the template function to orient the growth of molecular sieves.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: May 9, 2000
    Assignee: National Science Council
    Inventors: Kuei-Jung Chao, Chih-Ning Wu, Han-Chang Shih, Tzeng-Guang Tsai
  • Patent number: 5573718
    Abstract: .alpha.-Alumina fibers are produced by a sol-gel process using aluminum nitrate as a starting material. A reaction mixture including aluminum nitrate, water and aluminum particles is refluxed until the aluminum particles are completely dissolved to obtain an aluminum hydroxide sol. The aluminum hydroxide sol is then aged to increase the viscosity thereof, spun, dried and sintered to obtain .alpha.-alumina crystalline fibers.
    Type: Grant
    Filed: May 25, 1994
    Date of Patent: November 12, 1996
    Inventors: Han-Chang Shih, Yuan-Horng Chiou, Mu-Tsuan Tsai