Patents by Inventor Hande Kurnaz

Hande Kurnaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11092989
    Abstract: A regulator configured to provide at an output node a load current at an output voltage is described. The regulator comprises a pass transistor for providing the load current at the output node. Furthermore, the regulator comprises feedback means for deriving a feedback voltage from the output voltage at the output node. In addition, the regulator comprises a differential amplifier configured to control the pass transistor in dependence of the feedback voltage and in dependence of a reference voltage. The regulator further comprises compensation means configured to determine a sensed current which is indicative of the load current at the output node. Furthermore, the compensation means are configured to adjust an operation point of the regulator in dependence of the sensed current and in dependence of a value of a track impedance of a conductive track which links the output node to a load.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: August 17, 2021
    Assignee: Apple Inc.
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Gary Hague, Frank Kronmueller
  • Publication number: 20200225690
    Abstract: A regulator configured to provide at an output node a load current at an output voltage is described. The regulator comprises a pass transistor for providing the load current at the output node. Furthermore, the regulator comprises feedback means for deriving a feedback voltage from the output voltage at the output node. In addition, the regulator comprises a differential amplifier configured to control the pass transistor in dependence of the feedback voltage and in dependence of a reference voltage. The regulator further comprises compensation means configured to determine a sensed current which is indicative of the load current at the output node. Furthermore, the compensation means are configured to adjust an operation point of the regulator in dependence of the sensed current and in dependence of a value of a track impedance of a conductive track which links the output node to a load.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Gary Hague, Frank Kronmueller
  • Patent number: 10613565
    Abstract: A regulator configured to provide at an output node a load current at an output voltage is described. The regulator comprises a pass transistor for providing the load current at the output node. Furthermore, the regulator comprises feedback means for deriving a feedback voltage from the output voltage at the output node. In addition, the regulator comprises a differential amplifier configured to control the pass transistor in dependence of the feedback voltage and in dependence of a reference voltage. The regulator further comprises compensation means configured to determine a sensed current which is indicative of the load current at the output node. Furthermore, the compensation means are configured to adjust an operation point of the regulator in dependence of the sensed current and in dependence of a value of a track impedance of a conductive track which links the output node to a load.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: April 7, 2020
    Assignee: Apple Inc.
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Gary Hague, Frank Kronmueller
  • Publication number: 20190235549
    Abstract: A regulator configured to provide at an output node a load current at an output voltage is described. The regulator comprises a pass transistor for providing the load current at the output node. Furthermore, the regulator comprises feedback means for deriving a feedback voltage from the output voltage at the output node. In addition, the regulator comprises a differential amplifier configured to control the pass transistor in dependence of the feedback voltage and in dependence of a reference voltage. The regulator further comprises compensation means configured to determine a sensed current which is indicative of the load current at the output node. Furthermore, the compensation means are configured to adjust an operation point of the regulator in dependence of the sensed current and in dependence of a value of a track impedance of a conductive track which links the output node to a load.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Gary Hague, Frank Kronmueller
  • Patent number: 10324482
    Abstract: A regulator configured to provide at an output node a load current at an output voltage is described. The regulator comprises a pass transistor for providing the load current at the output node. Furthermore, the regulator comprises feedback means for deriving a feedback voltage from the output voltage at the output node. In addition, the regulator comprises a differential amplifier configured to control the pass transistor in dependence of the feedback voltage and in dependence of a reference voltage. The regulator further comprises compensation means configured to determine a sensed current which is indicative of the load current at the output node. Furthermore, the compensation means are configured to adjust an operation point of the regulator in dependence of the sensed current and in dependence of a value of a track impedance of a conductive track which links the output node to a load.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: June 18, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Gary Hague, Frank Kronmueller
  • Patent number: 10216207
    Abstract: A regulator for providing a load current at a regulator output voltage to a load at an output of the regulator is described. The regulator has a differential input stage to provide a differential output voltage based on a reference voltage and based on the regulator output voltage. Furthermore, the regulator has an output driver to generate a control signal based on the differential output voltage. In addition, the regulator has a pass transistor to provide the load current in dependence of the control signal. The regulator also has clamping circuitry to sense an overvoltage indication which indicates that the pass transistor is being turned off. Furthermore, the clamping circuitry clamps the differential output voltage to a clamping voltage, if the overvoltage indication indicates that the pass transistor is being turned off.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: February 26, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Frank Kronmueller
  • Patent number: 10203710
    Abstract: A voltage regulator which provides an output current at an output voltage at an output node of the voltage regulator, based on an input voltage at an input node of the voltage regulator is described. The voltage regulator has an output amplification stage for deriving the output current at the output node from the input voltage at the input node in dependence of a drive voltage. Furthermore, the voltage regulator has a differential amplification stage to determine the drive voltage in dependence of the output voltage and in dependence of a reference voltage. In addition, the voltage regulator has an adaption unit to determine a capacitance indication of a capacitor value of an output capacitor coupled to the output node of the voltage regulator. The adaption unit also adapts the differential amplification stage in dependence of the capacitance indication.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: February 12, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Ambreesh Bhattad, Frank Kronmueller, Hande Kurnaz
  • Publication number: 20180224874
    Abstract: A regulator configured to provide at an output node a load current at an output voltage is described. The regulator comprises a pass transistor for providing the load current at the output node. Furthermore, the regulator comprises feedback means for deriving a feedback voltage from the output voltage at the output node. In addition, the regulator comprises a differential amplifier configured to control the pass transistor in dependence of the feedback voltage and in dependence of a reference voltage. The regulator further comprises compensation means configured to determine a sensed current which is indicative of the load current at the output node. Furthermore, the compensation means are configured to adjust an operation point of the regulator in dependence of the sensed current and in dependence of a value of a track impedance of a conductive track which links the output node to a load.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Gary Hague, Frank Kronmueller
  • Publication number: 20180217623
    Abstract: A voltage regulator which provides an output current at an output voltage at an output node of the voltage regulator, based on an input voltage at an input node of the voltage regulator is described. The voltage regulator has an output amplification stage for deriving the output current at the output node from the input voltage at the input node in dependence of a drive voltage. Furthermore, the voltage regulator has a differential amplification stage to determine the drive voltage in dependence of the output voltage and in dependence of a reference voltage. In addition, the voltage regulator has an adaption unit to determine a capacitance indication of a capacitor value of an output capacitor coupled to the output node of the voltage regulator. The adaption unit also adapts the differential amplification stage in dependence of the capacitance indication.
    Type: Application
    Filed: November 20, 2017
    Publication date: August 2, 2018
    Inventors: Ambreesh Bhattad, Frank Kronmueller, Hande Kurnaz
  • Patent number: 9958892
    Abstract: A regulator configured to provide at an output node a load current at an output voltage is described. The regulator comprises a pass transistor for providing the load current at the output node. Furthermore, the regulator comprises feedback means for deriving a feedback voltage from the output voltage at the output node. In addition, the regulator comprises a differential amplifier configured to control the pass transistor in dependence of the feedback voltage and in dependence of a reference voltage. The regulator further comprises compensation means configured to determine a sensed current which is indicative of the load current at the output node. Furthermore, the compensation means are configured to adjust an operation point of the regulator in dependence of the sensed current and in dependence of a value of a track impedance of a conductive track which links the output node to a load.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: May 1, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Gary Hague, Frank Kronmueller
  • Patent number: 9946276
    Abstract: A voltage regulator provides an output current at an output voltage, based on an input voltage. The voltage regulator has a pass transistor for deriving the output current. The voltage regulator contains a drive transistor forming a current mirror in conjunction with the pass transistor, such that the output current through the pass transistor is dependent on a drive current through the drive transistor. The voltage regulator comprises an auxiliary transistor arranged such that at least a fraction of the drive current through the drive transistor flows through the auxiliary transistor. The voltage regulator has amplification circuitry to set the drive current through the drive transistor depending on the output voltage and on a reference voltage. The voltage regulator further contains control circuitry to detect an indication for a dropout situation where a difference between the input voltage and the output voltage falls below a dropout voltage.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: April 17, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Ambreesh Bhattad, Frank Kronmueller, Hande Kurnaz
  • Publication number: 20180081383
    Abstract: A regulator for providing a load current at a regulator output voltage to a load at an output of the regulator is described. The regulator has a differential input stage to provide a differential output voltage based on a reference voltage and based on the regulator output voltage. Furthermore, the regulator has an output driver to generate a control signal based on the differential output voltage. In addition, the regulator has a pass transistor to provide the load current in dependence of the control signal. The regulator also has clamping circuitry to sense an overvoltage indication which indicates that the pass transistor is being turned off. Furthermore, the clamping circuitry clamps the differential output voltage to a clamping voltage, if the overvoltage indication indicates that the pass transistor is being turned off.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Frank Kronmueller
  • Patent number: 9864386
    Abstract: A regulator for providing a load current at a regulator output voltage to a load at an output of the regulator is described. The regulator has a differential input stage to provide a differential output voltage based on a reference voltage and based on the regulator output voltage. Furthermore, the regulator has an output driver to generate a control signal based on the differential output voltage. In addition, the regulator has a pass transistor to provide the load current in dependence of the control signal. The regulator also has clamping circuitry to sense an overvoltage indication which indicates that the pass transistor is being turned off. Furthermore, the clamping circuitry clamps the differential output voltage to a clamping voltage, if the overvoltage indication indicates that the pass transistor is being turned off.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: January 9, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Frank Kronmueller
  • Publication number: 20170322573
    Abstract: A voltage regulator provides an output current at an output voltage, based on an input voltage. The voltage regulator has a pass transistor for deriving the output current. The voltage regulator contains a drive transistor forming a current mirror in conjunction with the pass transistor, such that the output current through the pass transistor is dependent on a drive current through the drive transistor. The voltage regulator comprises an auxiliary transistor arranged such that at least a fraction of the drive current through the drive transistor flows through the auxiliary transistor. The voltage regulator has amplification circuitry to set the drive current through the drive transistor depending on the output voltage and on a reference voltage. The voltage regulator further contains control circuitry to detect an indication for a dropout situation where a difference between the input voltage and the output voltage falls below a dropout voltage.
    Type: Application
    Filed: February 10, 2017
    Publication date: November 9, 2017
    Inventors: Ambreesh Bhattad, Frank Kronmueller, Hande Kurnaz
  • Publication number: 20170177014
    Abstract: A regulator configured to provide at an output node a load current at an output voltage is described. The regulator comprises a pass transistor for providing the load current at the output node. Furthermore, the regulator comprises feedback means for deriving a feedback voltage from the output voltage at the output node. In addition, the regulator comprises a differential amplifier configured to control the pass transistor in dependence of the feedback voltage and in dependence of a reference voltage. The regulator further comprises compensation means configured to determine a sensed current which is indicative of the load current at the output node. Furthermore, the compensation means are configured to adjust an operation point of the regulator in dependence of the sensed current and in dependence of a value of a track impedance of a conductive track which links the output node to a load.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Gary Hague, Frank Kronmueller
  • Publication number: 20170068264
    Abstract: A regulator for providing a load current at a regulator output voltage to a load at an output of the regulator is described. The regulator has a differential input stage to provide a differential output voltage based on a reference voltage and based on the regulator output voltage. Furthermore, the regulator has an output driver to generate a control signal based on the differential output voltage. In addition, the regulator has a pass transistor to provide the load current in dependence of the control signal. The regulator also has clamping circuitry to sense an overvoltage indication which indicates that the pass transistor is being turned off. Furthermore, the clamping circuitry clamps the differential output voltage to a clamping voltage, if the overvoltage indication indicates that the pass transistor is being turned off.
    Type: Application
    Filed: April 5, 2016
    Publication date: March 9, 2017
    Inventors: Hande Kurnaz, Ambreesh Bhattad, Frank Kronmueller
  • Patent number: 9170594
    Abstract: Methods and circuits for linearly controlling a limited, constant current during startup of LDOs, amplifiers, or DC-to-DC converters independent of load capacitor size and controlling a clean transition without glitches from a constant current (CC) mode during startup to a constant voltage (CV) mode during normal operation (CC-CV method) are disclosed. The constant current control loop and the constant voltage control loop are implemented in such a way that at the end of startup the voltage loop has taken over control and the current loop is moved far away from its active transistor region, allowing a switch of modes to occur without any nasty transitions on the output.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: October 27, 2015
    Assignee: Dialog Semiconductor GmbH
    Inventors: Ambreesh Bhattad, Frank Kronmueller, Alper Ucar, Hande Kurnaz
  • Publication number: 20150177757
    Abstract: Methods and circuits for linearly controlling a limited, constant current during startup of LDOs, amplifiers, or DC-to-DC converters independent of load capacitor size and controlling a clean transition without glitches from a constant current (CC) mode during startup to a constant voltage (CV) mode during normal operation (CC-CV method) are disclosed. The constant current control loop and the constant voltage control loop are implemented in such a way that at the end of startup the voltage loop has taken over control and the current loop is moved far away from its active transistor region, allowing a switch of modes to occur without any nasty transitions on the output.
    Type: Application
    Filed: January 6, 2014
    Publication date: June 25, 2015
    Applicant: Dialog Semiconductor GmbH
    Inventors: Ambreesh Bhattad, Frank Kronmueller, Alper Ucar, Hande Kurnaz