Patents by Inventor Hanji Ishikawa

Hanji Ishikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110240340
    Abstract: An electrically conductive floc is provided that does not need shearing in producing brushes with a smooth surface. The electrically conductive floc includes electrically conductive chemical fibers wherein said fibers have a diameter of 10 to 100 ?m, a fiber length of 0.1 to 5 mm, and a fiber length variation of 5% or less.
    Type: Application
    Filed: December 1, 2009
    Publication date: October 6, 2011
    Applicant: Toray Industries ,Inc.
    Inventors: Hidetoshi Takanaga, Yoshitaka Matsumura, Hanji Ishikawa
  • Patent number: 6935529
    Abstract: A fuel tank for a motor vehicle is fabricated from an austenitic stainless steel sheet having elongation of 50% or more after fracture by a uniaxial stretching test with a work-hardening coefficient of 4000 N/mm2 or a ferritic stainless steel sheet having elongation of 30% or more after fracture with Lankford value of 1.3 or more. The stainless steel sheets are reformed to a complicated shape of a fuel tank without work flaws such as cracks or break-down. Excellent corrosion-resistance of stainless steel itself is maintained in the fabricated fuel tank. Consequently, the proposed fuel tank is used without diffusion of gasoline to the open air over a long term.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: August 30, 2005
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Hanji Ishikawa, Shigeru Morikawa, Toshirou Nagoya, Toshiro Adachi, Naoto Hiramatsu, Satoshi Suzuki
  • Patent number: 6851455
    Abstract: A fuel-filler tube, which is made of a welded pipe of corrosion-resistant austenitic or ferritic stainless steel, has a fuel-supply opening with high dimensional accuracy. The austenitic stainless steel has hardness of 180 HV or less with a work-hardening coefficient of 0.49 or less. The ferritic stainless steel has Lankford value of 1.2 or more with elongation of 30% or more by a uniaxial tensile test.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: February 8, 2005
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Masato Otsuka, Hanji Ishikawa, Satoshi Suzuki, Toshiro Adachi
  • Publication number: 20040076776
    Abstract: A fuel tank for a motor vehicle is fabricated from an austenitic stainless steel sheet having elongation of 50% or more after fracture by a uniaxial stretching test with a work-hardening coefficient of 4000N/mm2 or a ferritic stainless steel sheet having elongation of 30% or more after fracture with Lankford value of 1.3 or more. The stainless steel sheets are reformed to a complicated shape of a fuel tank without work flaws such as cracks or break-down. Excellent corrosion-resistance of stainless steel itself is maintained in the fabricated fuel tank. Consequently, the proposed fuel tank is used without diffusion of gasoline to the open air over a long term.
    Type: Application
    Filed: September 26, 2003
    Publication date: April 22, 2004
    Inventors: Hanji Ishikawa, Shigeru Morikawa, Toshiro Adachi, Naoto Hiramatsu, Satoshi Suzuki
  • Patent number: 6723181
    Abstract: A new soft stainless steel sheet has an austenite-stability index Md30 controlled in a range of −120 to −10 and a stacking fault formability index SFI controlled not less than 30, and involves precipitates whose Cu concentration is controlled not more than 1.0%, so as to maintain concentration of dissolved Cu at 1-5%. The stainless steel sheet preferably contains up to 0.06%(C+N), up to 2.0% Si, up to 5% Mn, 15-20% Cr, 5-9% Ni, 1.0-4.0% Cu, up to 0.003% Al, up to 0.005% S, and optionally one or more of up to 0.5% Ti, up to 0.5% Nb, up to 0.5% Zr, up to 0.5% V, up to 3.0% Mo, up to 0.03% B, up to 0.02% REM (rare earth metals) and up to 0.03% Ca. The stainless steel sheet can be plastically deformed to an objective shape without any cracks even at a part heavily-worked part by multi-stage deep drawing or compression deforming. Md30(° C.)=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Mo SFI(mJ/m2)=2.2Ni+6Cu−1.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: April 20, 2004
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Hanji Ishikawa, Masato Otsuka, Satoshi Suzuki, Hideki Tanaka, Junichi Katsuki, Takashi Yamauchi, Naoto Hiramatsu
  • Publication number: 20030183292
    Abstract: A fuel-filler tube, which is made of a welded pipe of corrosion-resistant austenitic or ferritic stainless steel, has a fuel-supply opening with high dimensional accuracy. The austenitic stainless steel has hardness of 180 HV or less with a work-hardening coefficient of 0.49 or less. The ferritic stainless steel has Lankford value of 1.2 or more with elongation of 30% or more by a uniaxial tensile test.
    Type: Application
    Filed: May 16, 2003
    Publication date: October 2, 2003
    Inventors: Masato Otsuka, Hanji Ishikawa, Satoshi Suzuki, Toshiro Adachi
  • Patent number: 6581433
    Abstract: A method of manufacturing a metal pipe with an eccentrically expanded open end comprises the steps of plastically deforming to a coaxially expanded state M1 so that an axial wall length L2 at a side to be eccentrically expanded is longer than an axial wall length L1 at the opposite side to be expanded without eccentricity. The coaxially expanded open end M1 is then plastically deformed to an eccentrically expanded state M2 by forcibly inserting an eccentrically expanding punch into the coaxially expanded open end M1. The eccentrically expanding punch has a boundary between a conical tip and a cylindrical body inclined with a predetermined angle &thgr; so as to bring the cylindrical body into contact with an inner wall of the coaxially expanded open end M1 at a side to be eccentrically expanded earlier than the opposite side to be expanded without eccentricity.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: June 24, 2003
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Masato Otsuka, Hanji Ishikawa
  • Publication number: 20030102058
    Abstract: A new soft stainless steel sheet has an austenite-stability index Md30 controlled in a range of −120 to −10 and a stacking fault formability index SFI controlled not less than 30, and involves precipitates whose Cu concentration is controlled not more than 1.0%, so as to maintain concentration of dissolved Cu at 1-5%. The stainless steel sheet preferably contains up to 0.06%(C+N), up to 2.0% Si, up to 5% Mn, 15-20% Cr, 5-9% Ni, 1.0-4.0% Cu, up to 0.003% Al, up to 0.005% S, and optionally one or more of up to 0.5% Y, up to 0.5% Nb, up to 0.5% Zr, up to 0.5% V, up to 3.0% Mo, up to 0.03% B, up to 0.02% REM (rare earth metals) and up to 0.03% Ca. The stainless steel sheet can be plastically deformed to an objective shape without any cracks even at a part heavily-worked part by multi-stage deep drawing or compression deforming.
    Type: Application
    Filed: April 11, 2002
    Publication date: June 5, 2003
    Applicant: Nisshin Steel Co., Ltd.
    Inventors: Hanji Ishikawa, Masato Otsuka, Satoshi Suzuki, Hideki Tanaka, Junichi Katsuki, Takashi Yamauchi, Naoto Hiramatsu
  • Publication number: 20020073759
    Abstract: A method of manufacturing a metal pipe with an eccentrically expanded open end comprises the steps of plastically deforming to a coaxially expanded state M1 so that an axial wall length L2 at a side to be eccentrically expanded is longer than an axial wall length L1 at the opposite side to be expanded without eccentricity. The coaxially expanded open end M1 is then plastically deformed to an eccentrically expanded state M2 by forcibly inserting an eccentrically expanding punch into the coaxially expanded open end M1. The eccentrically expanding punch has a boundary between a conical tip and a cylindrical body inclined with a predetermined angle &thgr; so as to bring the cylindrical body into contact with an inner wall of the coaxially expanded open end M1 at a side to be eccentrically expanded earlier than the opposite side to be expanded without eccentricity.
    Type: Application
    Filed: September 24, 2001
    Publication date: June 20, 2002
    Applicant: Nisshin Steel Co., Ltd.
    Inventors: Masato Otsuka, Hanji Ishikawa