Patents by Inventor Hank Bink

Hank Bink has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944819
    Abstract: Systems, devices, and techniques are described for analyzing evoked compound action potentials (ECAP) signals to assess the effect of a delivered electrical stimulation signal. In one example, a system includes a stimulation generator configured to deliver a stimulation pulse to a patient, sensing circuitry configured to sense an evoked compound action potential (ECAP) signal evoked from the stimulation pulse, and processing circuitry. The processing circuitry may be configured to determine a maximum value of a derivative of the ECAP signal, determine a minimum value of the derivative of the ECAP signal, determine, based on the maximum value of the derivative and the minimum value of the derivative, a characteristic value of the ECAP signal, and determine, based on the characteristic value of the ECAP signal, at least one parameter value at least partially defining electrical stimulation therapy to be delivered to the patient.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: April 2, 2024
    Assignee: Medtronic, Inc.
    Inventors: Robert A. Corey, Kristin N. Hageman, David A. Dinsmoor, Hank Bink, Christopher L. Pulliam, Thomas Adamski
  • Publication number: 20240091539
    Abstract: Systems, devices, and techniques for adjusting electrical stimulation based on sensed ECAP signals. For example, processing circuitry is configured to control delivery of a first train of electrical stimulation pulses at a first frequency to a first target tissue and control delivery of a second train of electrical stimulation pulses at a second frequency to a second target tissue different from the first target tissue. The processing circuitry can also receive an ECAP signal elicited by a pulse of the second train of electrical stimulation pulses, adjust, based on the ECAP signal, a first value of a parameter that at least partially defines the first tram of electrical stimulation pulses to a second value, and, responsive to adjusting the first value of the parameter to the second value, control delivery of subsequent pulses of the first tram of electrical stimulation pulses according to the second value of the parameter.
    Type: Application
    Filed: January 13, 2022
    Publication date: March 21, 2024
    Inventors: David A. Dinsmoor, Ricardo Vallejo, Kristin N. Hageman, Hank Bink, Abigail Lauren Skerker
  • Patent number: 11931582
    Abstract: Evoked compound action potentials (ECAPs) may be used to determine therapy. For example, a medical device includes stimulation generation circuitry and processing circuitry. The processing circuitry is configured to determine if a characteristic of a first ECAP is greater than a threshold ECAP characteristic value. Based on the characteristic of the first ECAP being greater than the threshold ECAP characteristic value, the processing circuitry is configured to decrease a parameter of a first set of pulses delivered by the stimulation generation circuitry after the first ECAP. Additionally, the processing circuitry is configured to determine if a characteristic of a second ECAP is less than the threshold ECAP characteristic value and based on the characteristic of the second ECAP being less than the threshold ECAP characteristic value, increase a parameter of a second set of pulses delivered by the stimulation generation circuitry after the second ECAP.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: March 19, 2024
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Kristin N. Hageman, Hank Bink, Christopher L. Pulliam
  • Publication number: 20240042210
    Abstract: Systems, devices, methods, and techniques are described for using evoked compound action potential (ECAP) signals to monitor lead position and/or detect lead migration. An example system includes sensing circuitry configured to sense an ECAP signal, and processing circuitry. The processing circuitry controls the sensing circuitry to detect, after delivery of an electrical stimulation pulse, a current ECAP signal, and determines one or more characteristics of the current ECAP signal. The processing circuitry also compares the one or more characteristics of the current ECAP signal to corresponding one or more characteristics of a baseline ECAP signal, and determines, based on the comparison, a migration state of the electrodes delivering the electrical stimulation pulse. Additionally, the processing circuitry outputs, based on the migration state, an alert indicative of migration of the electrodes.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 8, 2024
    Inventors: Jiashu Li, David A. Dinsmoor, Duane L. Bourget, Kristin N. Hageman, Hank Bink, Christopher L. Pulliam
  • Publication number: 20240001125
    Abstract: Example devices and techniques for improving signal quality of a sensed evoked response signal include processing circuitry communicatively coupled to stimulation generation circuitry and sensing circuitry. The processing circuitry is configured to control the stimulation generation circuitry to generate a stimulation signal and receive from the sensing circuitry the sensed evoked response signal. The processing circuitry is configured to determine that a characteristic value of at least one of the artifact or the sensed evoked response signal meets a threshold and automatically change, based on the determination that the characteristic value of the at least one of an artifact in the sensed evoked response signal or the sensed evoked response signal meets the threshold, at least one sensing parameter.
    Type: Application
    Filed: June 26, 2023
    Publication date: January 4, 2024
    Inventors: Benjamin P. Isaacson, David A. Dinsmoor, Leonid M. Litvak, Kristin N. Hageman, Hank Bink
  • Patent number: 11813457
    Abstract: Systems, devices, and techniques are described for adjusting electrical stimulation based on detected ECAPs. In one example, a medical device includes processing circuitry configured to control stimulation circuitry to deliver a first electrical stimulation pulse and sensing circuitry to detect, after delivery of the first electrical stimulation pulse, an ECAP signal. The processing circuitry may be configured to determine a characteristic value of the ECAP signal, determine an ECAP differential value that indicates whether the characteristic value of the ECAP signal is one of greater than a selected ECAP characteristic value or less than the selected ECAP characteristic value, determine, based on the ECAP differential value, a gain value, determine, based on the gain value, a parameter value that at least partially defines a second electrical stimulation pulse, and control the stimulation circuitry to deliver the second electrical stimulation pulse according to the parameter value.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: November 14, 2023
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Patent number: 11786734
    Abstract: Systems, devices, methods, and techniques are described for using evoked compound action potential (ECAP) signals to monitor lead position and/or detect lead migration. An example system includes sensing circuitry configured to sense an ECAP signal, and processing circuitry. The processing circuitry controls the sensing circuitry to detect, after delivery of an electrical stimulation pulse, a current ECAP signal, and determines one or more characteristics of the current ECAP signal. The processing circuitry also compares the one or more characteristics of the current ECAP signal to corresponding one or more characteristics of a baseline ECAP signal, and determines, based on the comparison, a migration state of the electrodes delivering the electrical stimulation pulse. Additionally, the processing circuitry outputs, based on the migration state, an alert indicative of migration of the electrodes.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: October 17, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jiashu Li, David A. Dinsmoor, Duane L. Bourget, Kristin N. Hageman, Hank Bink, Christopher L. Pulliam
  • Patent number: 11779765
    Abstract: Devices, systems, and techniques are described for selecting an evoked compound action potential (ECAP) growth curve based on a posture of a patient. The ECAP growth curve defines a relationship between a parameter defining delivery of stimulation pulses delivered to the patient and a parameter of an ECAP signal of a nerve of a patient elicited by a stimulation pulse. In one example, a medical device detects a posture of a patient and selects an ECAP growth curve corresponding to the detected posture. The medical device selects, based on the ECAP growth curve corresponding to the detected posture and a characteristic of a detected ECAP signal, a value for a parameter for defining delivery of the stimulation pulses to the patient and controls delivery of the stimulation pulses according to the selected value for the parameter.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: October 10, 2023
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20230302281
    Abstract: In one example, the disclosure describes a method comprising receiving, by processing circuitry, information indicative of one or more evoked compound action potential (ECAP) signals. The one or more ECAP signals are sensed by at least one electrode carried by a medical lead. The processing circuitry determining that at least one characteristic value of the one or more ECAP signals is outside of an expected range. Responsive to determining that the at least one characteristic value of the one or more ECAP signals is outside of the expected range, the processing circuitry performs a lead integrity test for the medical lead.
    Type: Application
    Filed: April 27, 2023
    Publication date: September 28, 2023
    Inventors: Jiashu Li, Duane L. Bourget, Kristin N. Hageman, Hank Bink
  • Publication number: 20230264026
    Abstract: Systems, devices, and techniques are described for analyzing evoked compound action potentials (ECAP) signals to assess the effect of a delivered electrical stimulation signal. In one example, a system includes processing circuitry configured to receive ECAP information representative of an ECAP signal sensed by sensing circuitry, and determine, based on the ECAP information, that the ECAP signal includes at least one of an N2 peak, P3 peak, or N3 peak. The processing circuitry may then control delivery of electrical stimulation based on at least one of the N2 peak, P3 peak, or N3 peak.
    Type: Application
    Filed: April 27, 2023
    Publication date: August 24, 2023
    Inventors: David A. Dinsmoor, Hank Bink, Kristin N. Hageman
  • Patent number: 11707626
    Abstract: Systems, devices, and techniques are configured for analyzing evoked compound action potentials (ECAP) signals to assess the effect of a delivered electrical stimulation signal. In one example, a system includes processing circuitry configured to receive ECAP information representative of an ECAP signal sensed by sensing circuitry, and determine, based on the ECAP information, that the ECAP signal includes at least one of an N2 peak, P3 peak, or N3 peak. The processing circuitry may then control delivery of electrical stimulation based on at least one of the N2 peak, P3 peak, or N3 peak.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: July 25, 2023
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Hank Bink, Kristin N. Hageman
  • Patent number: 11648402
    Abstract: In one example, the disclosure describes a method comprising receiving, by processing circuitry, information indicative of one or more evoked compound action potential (ECAP) signals. The one or more ECAP signals are sensed by at least one electrode carried by a medical lead. The processing circuitry determining that at least one characteristic value of the one or more ECAP signals is outside of an expected range. Responsive to determining that the at least one characteristic value of the one or more ECAP signals is outside of the expected range, the processing circuitry performs a lead integrity test for the medical lead.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: May 16, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jiashu Li, Duane L. Bourget, Kristin N. Hageman, Hank Bink
  • Patent number: 11547855
    Abstract: Techniques are disclosed for implementing the use of electrically evoked compound action potentials (ECAPs) to adaptively adjust parameters of high frequency electrical stimulation. In one example, a medical device delivers electrical stimulation therapy comprising a train of electrical stimulation pulses to a patient, wherein the train of electrical stimulation pulses comprises a pulse frequency greater than or equal to 500 Hertz. After delivering the train of electrical stimulation pulses, the medical device ceases delivery of the high frequency electrical stimulation therapy for a predetermined period of time. During the predetermined period of time, the medical device senses an ECAP from the patient and determines, based on the sensed ECAP, a value of a parameter at least partially defining the train of electrical stimulation pulses.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: January 10, 2023
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20230001208
    Abstract: Systems, devices, and techniques are described for determining a posture state of a patient based on detected evoked compound action potentials (ECAPs). In one example, a medical device includes stimulation circuitry configured to deliver electrical stimulation and sensing circuitry configured to sense a plurality of evoked compound action potential (ECAP) signals. The medical device also includes processing circuitry configured to control the stimulation circuitry to deliver a plurality of electrical stimulation pulses having different amplitude values, control the sensing circuitry to detect, after delivery of each electrical stimulation pulse of the plurality of electrical stimulation pulses, a respective ECAP signal of the plurality of ECAP signals, and determine, based on the plurality of ECAP signals, a posture state of the patient.
    Type: Application
    Filed: September 12, 2022
    Publication date: January 5, 2023
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Kristin N. Hageman, Hank Bink, Jiashu Li
  • Patent number: 11439825
    Abstract: Systems, devices, and techniques are described for determining a posture state of a patient based on detected evoked compound action potentials (ECAPs). In one example, a medical device includes stimulation circuitry configured to deliver electrical stimulation and sensing circuitry configured to sense a plurality of evoked compound action potential (ECAP) signals. The medical device also includes processing circuitry configured to control the stimulation circuitry to deliver a plurality of electrical stimulation pulses having different amplitude values, control the sensing circuitry to detect, after delivery of each electrical stimulation pulse of the plurality of electrical stimulation pulses, a respective ECAP signal of the plurality of ECAP signals, and determine, based on the plurality of ECAP signals, a posture state of the patient.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: September 13, 2022
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Kristin N. Hageman, Hank Bink, Jiashu Li
  • Publication number: 20220266028
    Abstract: An example method of cycling electric stimulation includes delivering, via an implantable device, electric stimulation to a patient in accordance with a first therapy program; monitoring, via the implantable device and while the electric stimulation is being delivered in accordance with the first therapy program, a biomarker; and responsive to determining the biomarker satisfies a threshold, delivering, via the implantable device, electric stimulation to the patient in accordance with a second therapy program that is different than the first therapy program.
    Type: Application
    Filed: February 18, 2022
    Publication date: August 25, 2022
    Inventors: Hank Bink, Erik J. Peterson, Louis Vera-Portocarrero, Vinod Sharma, Jiashu Li
  • Publication number: 20220111210
    Abstract: Devices, systems, and techniques are described for selecting an evoked compound action potential (ECAP) growth curve based on a posture of a patient. The ECAP growth curve defines a relationship between a parameter defining delivery of stimulation pulses delivered to the patient and a parameter of an ECAP signal of a nerve of a patient elicited by a stimulation pulse. In one example, a medical device detects a posture of a patient and selects an ECAP growth curve corresponding to the detected posture. The medical device selects, based on the ECAP growth curve corresponding to the detected posture and a characteristic of a detected ECAP signal, a value for a parameter for defining delivery of the stimulation pulses to the patient and controls delivery of the stimulation pulses according to the selected value for the parameter.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20220096840
    Abstract: In one example, the disclosure describes a method comprising receiving, by processing circuitry, information indicative of one or more evoked compound action potential (ECAP) signals. The one or more ECAP signals are sensed by at least one electrode carried by a medical lead. The processing circuitry determining that at least one characteristic value of the one or more ECAP signals is outside of an expected range. Responsive to determining that the at least one characteristic value of the one or more ECAP signals is outside of the expected range, the processing circuitry performs a lead integrity test for the medical lead.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Inventors: Jiashu Li, Duane L. Bourget, Kristin N. Hageman, Hank Bink
  • Publication number: 20220080205
    Abstract: Systems, devices, and techniques are described for adjusting electrical stimulation based on detected ECAPs. In one example, a medical device includes processing circuitry configured to control stimulation circuitry to deliver a first electrical stimulation pulse and sensing circuitry to detect, after delivery of the first electrical stimulation pulse, an ECAP signal. The processing circuitry may be configured to determine a characteristic value of the ECAP signal, determine an ECAP differential value that indicates whether the characteristic value of the ECAP signal is one of greater than a selected ECAP characteristic value or less than the selected ECAP characteristic value, determine, based on the ECAP differential value, a gain value, determine, based on the gain value, a parameter value that at least partially defines a second electrical stimulation pulse, and control the stimulation circuitry to deliver the second electrical stimulation pulse according to the parameter value.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20220062639
    Abstract: Systems, devices, and techniques are described for analyzing evoked compound action potentials (ECAP) signals to assess the effect of a delivered electrical stimulation signal. In one example, a system includes processing circuitry configured to receive ECAP information representative of an ECAP signal sensed by sensing circuitry, and determine, based on the ECAP information, that the ECAP signal includes at least one of an N2 peak, P3 peak, or N3 peak. The processing circuitry may then control delivery of electrical stimulation based on at least one of the N2 peak, P3 peak, or N3 peak.
    Type: Application
    Filed: August 23, 2021
    Publication date: March 3, 2022
    Inventors: David A. Dinsmoor, Hank Bink, Kristin N. Hageman