Patents by Inventor Hanlong Yang

Hanlong Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932183
    Abstract: A central electronic control unit (ECU, Ref. 14) is provided for controlling at least one bi-directional direct current (DC) motor (106) attached to a first vehicle seat and at least one electronic device attached to a second vehicle seat. The central ECU includes a micro-controller configured to receive feedback on a positional status of the bi-directional DC motor from a Hall Effect sensor (130). The micro-controller is configured to receive input instructions for the bi-directional DC motor and the electronic device. The micro-controller creates command instructions based in part on the received feedback and received input instructions. The central ECU selectively provides pulse width modulated (PWM) power to the bi-directional DC motor attached to the first vehicle seat and selectively provides power to the electronic device attached to the second vehicle seat in response to the command instructions from the micro-controller.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: March 19, 2024
    Assignee: Magna Seating Inc.
    Inventors: Hanlong Yang, Adiel De Jesus Astudillo Soto, Carlos Alberto Onofre Rosas
  • Publication number: 20230166639
    Abstract: An electronic control unit configured to control at least one motor used to reposition a seat assembly within an automotive vehicle. The electronic control unit comprises a mode manager configured to reposition the seat assembly from a first position to a second position and a performance evaluation module configured to monitor the repositioning of the seat assembly. The performance evaluation module detects and compensates for abrupt stops in the at least one motor.
    Type: Application
    Filed: April 30, 2021
    Publication date: June 1, 2023
    Inventors: Hanlong Yang, Pragathi Prasanna Kumar, Balasaranya Chitta
  • Publication number: 20230135176
    Abstract: A central electronic control unit (ECU, Ref. 14) is provided for controlling at least one bi-directional direct current (DC) motor (106) attached to a first vehicle seat and at least one electronic device attached to a second vehicle seat. The central ECU includes a micro-controller configured to receive feedback on a positional status of the bi-directional DC motor from a Hall Effect sensor (130). The micro-controller is configured to receive input instructions for the bi-directional DC motor and the electronic device. The micro-controller creates command instructions based in part on the received feedback and received input instructions. The central ECU selectively provides pulse width modulated (PWM) power to the bi-directional DC motor attached to the first vehicle seat and selectively provides power to the electronic device attached to the second vehicle seat in response to the command instructions from the micro-controller.
    Type: Application
    Filed: February 19, 2020
    Publication date: May 4, 2023
    Inventors: Hanlong Yang, Adiel De Jesus Astudillo Soto, Carlos Alberto Onofre Rosas
  • Publication number: 20220219571
    Abstract: An occupant classification system for a seat assembly. The seat assembly includes a seat cushion and a seat back. The system comprises a plurality of sensors, an algorithm, a posture classifier and a weight classification system. Each of the plurality of sensors measures a force applied to the seat cushion and/or seat back by an occupant of the seat assembly. The algorithm monitors a compensation factor and adjusts the forces measured by the plurality of sensors to compensate for the compensation factor. The posture classifier identifies a posture of the occupant based on distribution of the adjusted forces for each of the plurality of sensors. The weight classification system identifies a weight class of the occupant based on the posture and magnitude of the adjusted forces for each of the plurality of sensors.
    Type: Application
    Filed: May 8, 2020
    Publication date: July 14, 2022
    Inventors: Hanlong Yang, James Johnson, Bruno Carraro
  • Patent number: 8701390
    Abstract: A vehicle has an exhaust aftertreatment system including an LNT. The vehicle operates through a series of ignition cycles, deNOX cycles, and deSOX cycles. DeNOX operations begin when the LNT reaches a loading threshold. The applicable threshold depends on operating conditions, such as mean LNT temperature and mean exhaust flow rate. The thresholds are adapted based on NOX removal efficiency data. The data is compared to target values. The target values depend on the operating condition range, but remain fixed while the thresholds are adapted. NOX removal efficiency is measured over intervals corresponding to entire deNOX cycles. The data is sorted into bins according to operating conditions. The adaptations are only made if a bin has several data points accumulated over a minimum interval that is at least one ignition or deSOX cycle, preferably several. The method provides stable adaptations that compensate for aging.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 22, 2014
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Christian Thomas Chimner, Hanlong Yang
  • Publication number: 20120124967
    Abstract: A vehicle has an exhaust aftertreatment system including an LNT. The vehicle operates through a series of ignition cycles, deNOX cycles, and deSOX cycles. DeNOX operations begin when the LNT reaches a loading threshold. The applicable threshold depends on operating conditions, such as mean LNT temperature and mean exhaust flow rate. The thresholds are adapted based on NOX removal efficiency data. The data is compared to target values. The target values depend on the operating condition range, but remain fixed while the thresholds are adapted. NOX removal efficiency is measured over intervals corresponding to entire deNOX cycles. The data is sorted into bins according to operating conditions. The adaptations are only made if a bin has several data points accumulated over a minimum interval that is at least one ignition or deSOX cycle, preferably several. The method provides stable adaptations that compensate for aging.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Applicant: Eaton Corporation
    Inventors: Hanlong Yang, Christian Thomas Chimner
  • Publication number: 20110185708
    Abstract: The exhaust from a diesel-fueled internal combustion engine is treated by a lean NOX trap. The maximum temperature used for desulfating the lean NOX trap is kept relatively lower during early life and progressively increased as the trap ages. Designing for adequate late life performance entails excess capacity during early life. The method utilizes the excess capacity available during early life to slow aging of the trap and thereby extend the trap lifetime. The method facilitates meeting durability requirements for diesel-powered vehicles with exhaust aftertreatment.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Applicant: Eaton Corporation
    Inventors: James Edward McCarthy, JR., Jiyang Yan, Christian Thomas Chimner, Hanlong Yang
  • Patent number: 6885932
    Abstract: A method and system for a misfire detection acquires (301) a series of acceleration data (302) representative of acceleration behavior of an engine. The data is sampled (304) to obtain acceleration data samples at a rate sufficient to obtain up to fourth-order perturbations of the data. The samples are filtered (322) to provide bandwidth limited samples, which are provided to at least two channels (325, 329). The samples are pattern matched (332) in a first channel to enhance harmonic phenomena and pattern canceled (330) in a second channel to enhance random phenomena. Hard and random misfires are detected (334) dependent on a magnitude of the filtered acceleration data samples. Preferably, a third channel (335) is added to detect multiple misfires.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: April 26, 2005
    Assignee: Motorola, Inc.
    Inventors: Louis Yizhang Liu, Richard J. Gilbert, Donald P. Kultgen, Jeffrey D. Naber, Hanlong Yang
  • Publication number: 20050033501
    Abstract: A method and system for a misfire detection acquires (301) a series of acceleration data (302) representative of acceleration behavior of an engine. The data is sampled (304) to obtain acceleration data samples at a rate sufficient to obtain up to fourth-order perturbations of the data. The samples are filtered (322) to provide bandwidth limited samples, which are provided to at least two channels (325, 329). The samples are pattern matched (332) in a first channel to enhance harmonic phenomena and pattern canceled (330) in a second channel to enhance random phenomena. Hard and random misfires are detected (334) dependent on a magnitude of the filtered acceleration data samples. Preferably, a third channel (335) is added to detect multiple misfires.
    Type: Application
    Filed: August 8, 2003
    Publication date: February 10, 2005
    Inventors: Louis Liu, Richard Gilbert, Donald Kultgen, Jeffrey Naber, Hanlong Yang
  • Patent number: 6622080
    Abstract: An electronic throttle controller (200) includes a feedforward control (222), a PID (224), a sliding mode control (226) and an adder (230). The PID (224) is capable of generating a first feedback term that compensates for an error signal. The sliding mode control (226) is capable of generating a second feedback term that incorporates a solution to a Lyapunov equation applied to the error signal with sliding gain being updated by an estimation of unknown dynamics. The adder (230) adds the first feedback term, the second feedback term and the feedforward control (222) so as to generate a control signal (232).
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: September 16, 2003
    Assignee: Motorola, Inc.
    Inventors: Hanlong Yang, Louis Yizhang Liu, Jeffrey D. Naber
  • Publication number: 20030023365
    Abstract: An electronic throttle controller (200) includes a feedforward control (222), a PID (224), a sliding mode control (226) and an adder (230). The PID (224) is capable of generating a first feedback term that compensates for an error signal. The sliding mode control (226) is capable of generating a second feedback term that incorporates a solution to a Lyapunov equation applied to the error signal with sliding gain being updated by an estimation of unknown dynamics. The adder (230) adds the first feedback term, the second feedback term and the feedforward control (222) so as to generate a control signal (232).
    Type: Application
    Filed: July 26, 2001
    Publication date: January 30, 2003
    Inventors: Hanlong Yang, Louis Yizhang Liu, Jeffrey D. Naber