Patents by Inventor Hannes Kind

Hannes Kind has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10386158
    Abstract: A light source (1), which has a hollow body (2) closed in a gas-tight manner, which is coated on at least one inner side with a phosphor and is filled with gaseous tritium and emits colored light, the hollow body (2) being arranged in a housing (3) of the light source (1), the light source (1) having at least one body (4) of a colored material which annularly encircles a longitudinal center axis of the light source (1) and the color of which is different from black in daylight, the annularly encircling body (4) being arranged at least on a terminal end region of the housing (3) or at least between the terminal end region of the housing (3) and a light-emitting end face of the hollow body (2).
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: August 20, 2019
    Assignee: mb-microtec ag
    Inventors: Hannes Kind, Pascal Knoepfel
  • Patent number: 9921034
    Abstract: The invention relates to a sight device (1), in particular a reflector sight or telescopic sight, which sight device has a lighting apparatus (2) for producing or illuminating a target mark, wherein the lighting apparatus (2) comprises an light guide (3) made of photoluminescent, in particular fluorescent material and a radioluminescent light source (7) coupled to the light guide (3), wherein the light guide (3) is designed to receive ambient light and convert said ambient light into photoluminescence light along at least one segment (4) of the longitudinal extent of the light guide, and wherein the absorption spectrum (10) of the photoluminescent material of the light guide (3) and the emission spectrum (9) of the radioluminescent light source (7) in the visible range can both be characterized by a spectral bandwidth and a center wavelength.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: March 20, 2018
    Assignee: MB-Microtec AG
    Inventors: Daniel Jakob, Hannes Kind
  • Patent number: 9881999
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: January 30, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20180010886
    Abstract: A light source (1), which has a hollow body (2) closed in a gas-tight manner, which is coated on at least one inner side with a phosphor and is filled with gaseous tritium and emits colored light, the hollow body (2) being arranged in a housing (3) of the light source (1), the light source (1) having at least one body (4) of a colored material which annularly encircles a longitudinal center axis of the light source (1) and the color of which is different from black in daylight, the annularly encircling body (4) being arranged at least on a terminal end region of the housing (3) or at least between the terminal end region of the housing (3) and a light-emitting end face of the hollow body (2).
    Type: Application
    Filed: February 4, 2016
    Publication date: January 11, 2018
    Applicant: mb-microtec ag
    Inventors: Hannes KIND, Pascal KNOEPFEL
  • Publication number: 20170118856
    Abstract: A method produces a housing with at least one hermetically sealed receiving space for an electronic component, the receiving space including at least a part of the interior of the housing. In the method, a hollow body made of glass and having at least one opening is produced/provided, at least one electronic device is introduced through the at least one opening, and the receiving space is hermetically sealed by melting the housing, or the at least one opening is sealed by laser radiation. A device has an at least partially hermetically sealed housing made of silicon, particularly a housing produced according to the above-mentioned method.
    Type: Application
    Filed: January 4, 2017
    Publication date: April 27, 2017
    Applicant: MB-Microtec AG
    Inventors: Heinz BLUNIER, Hannes KIND, Sandro M.O.L. SCHNEIDER
  • Patent number: 9572273
    Abstract: A method produces a housing with at least one hermetically sealed receiving space for an electronic component, the receiving space including at least a part of the interior of the housing. In the method, a hollow body made of glass and having at least one opening is produced/provided, at least one electronic device is introduced through the at least one opening, and the receiving space is hermetically sealed by melting the housing, or the at least one opening is sealed by laser radiation. A device has an at least partially hermetically sealed housing made of silicon, particularly a housing produced according to the above-mentioned method.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: February 14, 2017
    Assignee: MB-Microtec AG
    Inventors: Heinz Blunier, Hannes Kind, Sandro M. O. L. Schneider
  • Patent number: 9488318
    Abstract: A process produces self-illuminating bodies, in which a recess is made in a housing part of a housing and a fluorescent and/or phosphorescent layer and/or a mask is arranged on a boundary wall of a cavity which is formed by joining the housing parts together. The housing parts are connected in a gastight manner, with at least one feed opening from outside into the cavity remaining open. Furthermore, a medium emitting decaying radiation is introduced through the at least one feed opening into the cavity, the decaying radiation being intended to illuminate the fluorescent and/or phosphorescent layer. Furthermore, a self-illuminating body and also the use thereof are specified.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: November 8, 2016
    Assignee: MB-Microtec AG
    Inventors: Hannes Kind, Sandro M. O. L. Schneider
  • Publication number: 20160238343
    Abstract: The invention relates to a sight device (1), in particular a reflector sight or telescopic sight, which sight device has a lighting apparatus (2) for producing or illuminating a target mark, wherein the lighting apparatus (2) comprises an light guide (3) made of photoluminescent, in particular fluorescent material and a radioluminescent light source (7) coupled to the light guide (3), wherein the light guide (3) is designed to receive ambient light and convert said ambient light into photoluminescence light along at least one segment (4) of the longitudinal extent of the light guide, and wherein the absorption spectrum (10) of the photoluminescent material of the light guide (3) and the emission spectrum (9) of the radioluminescent light source (7) in the visible range can both be characterized by a spectral bandwidth and a center wavelength.
    Type: Application
    Filed: October 13, 2014
    Publication date: August 18, 2016
    Applicant: MB-Microtec AG
    Inventors: Daniel JAKOB, Hannes KIND
  • Publication number: 20150252952
    Abstract: A process produces self-illuminating bodies, in which a recess is made in a housing part of a housing and a fluorescent and/or phosphorescent layer and/or a mask is arranged on a boundary wall of a cavity which is formed by joining the housing parts together. The housing parts are connected in a gastight manner, with at least one feed opening from outside into the cavity remaining open. Furthermore, a medium emitting decaying radiation is introduced through the at least one feed opening into the cavity, the decaying radiation being intended to illuminate the fluorescent and/or phosphorescent layer. Furthermore, a self-illuminating body and also the use thereof are specified.
    Type: Application
    Filed: August 28, 2013
    Publication date: September 10, 2015
    Applicant: MB-Microtec AG
    Inventors: Hannes Kind, Sandro M.O.L. Schneider
  • Publication number: 20150208539
    Abstract: A method produces a housing with at least one hermetically sealed receiving space for an electronic component, the receiving space including at least a part of the interior of the housing. In the method, a hollow body made of glass and having at least one opening is produced/provided, at least one electronic device is introduced through the at least one opening, and the receiving space is hermetically sealed by melting the housing, or the at least one opening is sealed by laser radiation. A device has an at least partially hermetically sealed housing made of silicon, particularly a housing produced according to the above-mentioned method.
    Type: Application
    Filed: August 27, 2013
    Publication date: July 23, 2015
    Applicant: MB-Microtec AG
    Inventors: Heinz Blunier, Hannes Kind, Sandro M.O.L. Schneider
  • Patent number: 7834264
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: November 16, 2010
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20100003516
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: June 19, 2009
    Publication date: January 7, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Patent number: 7569847
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: August 4, 2009
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Patent number: 7569941
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 4, 2009
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20080092938
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: December 22, 2006
    Publication date: April 24, 2008
    Inventors: Arun Majumdar, Ali Shakouri, Timothy Sands, Peidong Yang, Samuel Mao, Richard Russo, Henning Feick, Eicke Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20070164270
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: December 22, 2006
    Publication date: July 19, 2007
    Inventors: Arun Majumdar, Ali Shakouri, Timothy Sands, Peidong Yang, Samuel Mao, Richard Russo, Henning Feick, Eicke Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Patent number: 7239769
    Abstract: A nanowire switching device and method. The device has a nanowire structure comprising an elongated member having a cross-sectional area ranging from about 1 nanometers but less than about 500 nanometers, but can also be at other dimensions, which vary or are substantially constant or any combination of these. The device also has a first terminal coupled to a first portion of the nanowire structure; and a second terminal coupled to a second portion of the nanowire structure. The second portion of the nanowire structure is disposed spatially from the first portion of the nanowire structure. An active surface structure is coupled to the nanowire structure. The active surface structure extends from the first portion to the second portion along the elongated member.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: July 3, 2007
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Hannes Kind, Haoquan Yan, Matthew Law, Benjamin Messer
  • Publication number: 20060054982
    Abstract: A nanowire switching device and method. The device has a nanowire structure comprising an elongated member having a cross-sectional area ranging from about 1 nanometers but less than about 500 nanometers, but can also be at other dimensions, which vary or are substantially constant or any combination of these. The device also has a first terminal coupled to a first portion of the nanowire structure; and a second terminal coupled to a second portion of the nanowire structure. The second portion of the nanowire structure is disposed spatially from the first portion of the nanowire structure. An active surface structure is coupled to the nanowire structure. The active surface structure extends from the first portion to the second portion along the elongated member.
    Type: Application
    Filed: December 30, 2004
    Publication date: March 16, 2006
    Applicant: The Regents of the University of California, a California Corporation
    Inventors: Peidong Yang, Hannes Kind, Haoquan Yan, Matthew Law, Benjamin Messer
  • Patent number: 6996147
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: February 7, 2006
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20050161662
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: January 20, 2005
    Publication date: July 28, 2005
    Inventors: Arun Majumdar, Ali Shakouri, Timothy Sands, Peidong Yang, Samuel Mao, Richard Russo, Henning Feick, Eicke Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan