Patents by Inventor Hanno Heyke Homann

Hanno Heyke Homann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10932740
    Abstract: A method for optimizing an X-ray imaging system during a mammographic examination. In order to provide an optimization of the X-ray imaging a breast is compressed between a support plate and a compression plate. A force-height curve is then acquired during the compression. An elasticity value of the breast is determined based on the force-height curve. A parameter of the X-ray imaging system is optimized based on the determined elasticity value.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: March 2, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Hanno Heyke Homann
  • Publication number: 20200337664
    Abstract: The present invention relates to a device (1) for fractional flow reserve determination. The device (1) comprises a model generator (10) configured to generate a three-dimensional model (3DM) of a portion of an imaged vascular vessel tree (VVT) surrounding a stenosed vessel segment (SVS), based on a partial segmentation of the imaged vascular vessel tree (VVT). Further, the device comprises an image processor (20) configured to calculate a blood flow (Q) through the stenosed vessel segment (SVS) based on an analysis of a time-series of X-ray images of the vascular vessel tree (VVT). Still further, the device comprises a fractional-flow-reserve determiner (30) configured to determine a fractional flow reserve (FFR) based on the three-dimensional model (3DM) and the calculated blood flow.
    Type: Application
    Filed: July 7, 2020
    Publication date: October 29, 2020
    Inventors: Hanno Heyke HOMANN, Michael GRASS, Raoul FLORENT, Holger SCHMITT, Odlie BONNEFOUS, Hannes NICKISCH
  • Patent number: 10561383
    Abstract: The invention relates to an imaging system (10) for imaging an elongated region of interest of an object, an imaging method for imaging an elongated region of interest of an object, a computer program element for controlling such system for performing such method and a computer readable medium having stored such computer program element. The imaging system (10) comprises an acquisition unit (11) and a processing unit (13). The acquisition unit (11) is a C-arm acquisition unit and configured to acquire first image data of the object to be imaged with a first imaging parameter. The acquisition unit (11) is further configured to acquire second, different image data of an object to be imaged with a second imaging parameter. The second geometric imaging parameter is defined based on object specific data for the volume data to be aligned with the elongated region of interest of the object to be imaged. The processing unit (13) is configured to combine the first and second image data into volume data.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: February 18, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Michael Grass, Eberhard Sebastian Hansis, Dirk Schäfer, Tobias Klinder, Christian Haase, Hanno Heyke Homann
  • Patent number: 10552958
    Abstract: The present invention relates to a device (1) for fractional flow reserve determination, the device (1) comprising: a model source (10) configured to provide a first three-dimensional model (3DM1) of a portion of an imaged vascular vessel tree (VVT) surrounding a stenosed vessel segment (SVS) and configured to provide a second three-dimensional model (3DM2) of a pressure wire insertable into the vascular vessel tree (VVT); and a processor (20) configured to calculate a first blood flow (Q1) through the stenosed vessel segment (SVS) with the pressure wire (PW) inserted into the vascular vessel tree (VVT) based on the first and the second three-dimensional model and to calculate a second blood flow (Q2) through the stenosed vessel segment (SVS) without the pressure wire (PW) inserted into the vascular vessel tree (VVT) based on the first three-dimensional model (3DM1) and to determine a first fractional flow reserve value (FFR1) to be measured with the pressure wire (PW) inserted into the vascular vessel tree (
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: February 4, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Eberhard Sebastian Hansis, Holger Schmitt, Michael Grass, Dirk Schaefer, Hanno Heyke Homann, Tobias Klinder, Christian Haase
  • Patent number: 10448911
    Abstract: Medical images are acquired in a tomosynthesis process. Processed 3D volume data representing a target acquired from scanning may be viewed from a set of forward projection directions, in which one or more forward projections through the processed 3D volume data is oblique relative to a central acquisition direction of the scanning process. The first set of forward projections is then displayed as a set of synthetic mammograms. Therefore, a medical practitioner can more easily identify abnormalities within a target volume, because the relative displacement of abnormalities at different depths in the target volume will change at different rates dependent on the viewing angle as the viewing position is moved around the target.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: October 22, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Klaus Erhard, Hanno Heyke Homann, Jonas Rikard Rehn
  • Patent number: 10251594
    Abstract: Minimally-invasive spinal inventions are often performed using fluoroscopic imaging methods, which can give a real-time impression of the location of a surgical instrument, at the expense of a small field of view. When operating on a spinal column, a small field of view can be a problem, because a medical professional is left with no reference vertebra in the fluoroscopy image, from which to identify a vertebra, which is the subject of the intervention. Identifying contiguous vertebrae is difficult because such contiguous vertebrae are similar in shape. However, characteristic features, which differentiate one vertebra from other vertebra, and which are visible in the fluoroscopic view, may be used to provide a reference.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: April 9, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Tobias Klinder, Eberhard Sebastian Hansis, Michael Grass, Dirk Schaefer, Hanno Heyke Homann, Christian Haase
  • Patent number: 10255697
    Abstract: A method and related apparatus (VS) for synthesizing a projection image (S), in particular for use in mammography. It is proposed to compute a weight function from one image volume (V1) and is then used to implement a weighted forward projection through another image volume block to compute a synthesized projection image (S) across block (V2).
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: April 9, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hanno Heyke Homann, Klaus Erhard
  • Publication number: 20190083052
    Abstract: The present invention relates to a device (1) for fractional flow reserve determination. The device (1) comprises a model generator (10) configured to generate a three-dimensional model (3DM) of a portion of an imaged vascular vessel tree (VVT) surrounding a stenosed vessel segment (SVS), based on a partial segmentation of the imaged vascular vessel tree (VVT). Further, the device comprises an image processor (20) configured to calculate a blood flow (Q) through the stenosed vessel segment (SVS) based on an analysis of a time-series of X-ray images of the vascular vessel tree (VVT). Still further, the device comprises a fractional-flow-reserve determiner (30) configured to determine a fractional flow reserve (FFR) based on the three-dimensional model (3DM) and the calculated blood flow.
    Type: Application
    Filed: December 1, 2015
    Publication date: March 21, 2019
    Inventors: Hanno Heyke HOMANN, Michael GRASS, Raoul FLORENT, Holger SCHMITT, Odile BONNEFOUS, Hannes NICKISCH
  • Patent number: 10114090
    Abstract: A magnetic resonance imaging system acquires magnetic resonance data from a target volume in a subject. The magnetic resonance imaging system includes multiple excitation sources for generating a slice-selective or slab-selective spatial radio frequency (RF) excitation magnetic field targeting slice/slab spatial variations in the target volume, and a controller coupled to the excitation sources. The controller is adapted for: determining a power level required by the excitation sources for generating the slice-selective/or slab-selective spatial RF excitation magnetic field, decomposing the slice-selective or slab-selective spatial RF excitation magnetic field into respective RF excitation constituents of the excitation sources, controlling each of the excitation sources to simultaneously generate the respective RF excitation constituent, using the determined power level for acquiring the magnetic resonance data.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: October 30, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ulrich Katscher, Hanno Heyke Homann, Peter Boernert
  • Publication number: 20180286517
    Abstract: Systems and related methods to estimate, for a liquid dynamic system, flow or resistance based on a model of an object and pressure measurements collected in-situ at said object. Alternatively, pressure flow measurements are collected and pressure or resistance is being estimated.
    Type: Application
    Filed: September 27, 2016
    Publication date: October 4, 2018
    Inventors: Michael GRASS, HANNO Heyke HOMANN, BRAM Antonius Philomena VAN RENS, PETER Maria Johannes RONGEN, MELIKE BOZKAYA, ROLAND Wilhelmus Maria BULLENS, ARJEN VAN DER HORST
  • Publication number: 20180286045
    Abstract: The present invention relates to a device (1) for fractional flow reserve determination, the device (1) comprising: a model source (10) configured to provide a first three-dimensional model (3DM1) of a portion of an imaged vascular vessel tree (VVT) surrounding a stenosed vessel segment (SVS) and configured to provide a second three-dimensional model (3DM2) of a pressure wire insertable into the vascular vessel tree (VVT); and a processor (20) configured to calculate a first blood flow (Q1) through the stenosed vessel segment (SVS) with the pressure wire (PW) inserted into the vascular vessel tree (VVT) based on the first and the second three-dimensional model and to calculate a second blood flow (Q2) through the stenosed vessel segment (SVS) without the pressure wire (PW) inserted into the vascular vessel tree (VVT) based on the first three-dimensional model (3DM1) and to determine a first fractional flow reserve value (FFR1) to be measured with the pressure wire (PW) inserted into the vascular vessel tree (
    Type: Application
    Filed: April 26, 2016
    Publication date: October 4, 2018
    Inventors: Eberhard Sebastian HANSIS, Holger SCHMITT, Michael GRASS, Dirk SCHAEFER, Hanno Heyke HOMANN, Tobias KLINDER, Christian HAASE
  • Patent number: 9901319
    Abstract: The invention relates to peripheral equalization during a mammography X-ray examination. High contrast tissue pixel values are removed from the background estimate by finding the minimum intensity values of the pixel located in the neighborhood, which have approximately the same distance to the skin line. Thus, high attenuating pixel values may be removed from the estimate and replaced by lower attenuating tissue pixel values. After a minimum filtration, a conventional peripheral equalization is performed. This may result in less overshoots and intensity values for higher attenuating structures in the peripheral region may become more consistent with intensity values for higher attenuating structures in the fully compressed region.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: February 27, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Frank Bergner, Hanno Heyke Homann, André Goossen, Hanns-Ingo Maack
  • Publication number: 20170367645
    Abstract: Minimally-invasive spinal inventions are often performed using fluoroscopic imaging methods, which can give a real-time impression of the location of a surgical instrument, at the expense of a small field of view. When operating on a spinal column, a small field of view can be a problem, because a medical professional is left with no reference vertebra in the fluoroscopy image, from which to identify a vertebra, which is the subject of the intervention. Identifying contiguous vertebrae is difficult because such contiguous vertebrae are similar in shape. However, characteristic features, which differentiate one vertebra from other vertebra, and which are visible in the fluoroscopic view, may be used to provide a reference.
    Type: Application
    Filed: January 7, 2016
    Publication date: December 28, 2017
    Inventors: TOBIAS KLINDER, EBERHARD SEBASTIAN HANSIS, MICHAEL GRASS, DIRK SCHAEFER, HANNO HEYKE HOMANN, CHRISTIAN HAASE
  • Patent number: 9836872
    Abstract: A method and related apparatus (VS) for synthetic projection images, in particular synthetic 2D mammograms (S) formed from a 3D image volume T made up of slices (SL). It is proposed to compute a forward projection (FP) using a weighted average function that is implemented by a filter (FL). The filter function (FL) is configured such that that voxels in a slice with maximum sharpness are assigned highest weights thereby avoiding blurring by averaging with structurally less relevant slices.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: December 5, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Klaus Erhard, Hanno Heyke Homann, Jonas Rikard Rehn
  • Publication number: 20170340299
    Abstract: The invention relates to an imaging system (10) for imaging an elongated region of interest of an object, an imaging method for imaging an elongated region of interest of an object, a computer program element for controlling such system for performing such method and a computer readable medium having stored such computer program element. The imaging system (10) comprises an acquisition unit (11) and a processing unit (13). The acquisition unit (11) is a C-arm acquisition unit and configured to acquire first image data of the object to be imaged with a first imaging parameter. The acquisition unit (11) is further configured to acquire second, different image data of an object to be imaged with a second imaging parameter. The second geometric imaging parameter is defined based on object specific data for the volume data to be aligned with the elongated region of interest of the object to be imaged. The processing unit (13) is configured to combine the first and second image data into volume data.
    Type: Application
    Filed: December 17, 2015
    Publication date: November 30, 2017
    Applicant: Koninklijke Philips N.V.
    Inventors: MICHAEL GRASS, EBERHARD SEBASTIAN HANSIS, DIRK SCHÄFER, TOBIAS KLINDER, CHRISTIAN HAASE, HANNO HEYKE HOMANN
  • Publication number: 20170316588
    Abstract: A method and related apparatus (VS) for synthesizing a projection image (S), in particular for use in mammography. It is proposed to compute a weight function from one image volume (V1) and is then used to implement a weighted forward projection through another image volume block to compute a synthesized projection image (S) across block (V2).
    Type: Application
    Filed: November 10, 2015
    Publication date: November 2, 2017
    Inventors: Hanno Heyke HOMANN, Klaus ERHARD
  • Publication number: 20170265830
    Abstract: The invention relates to peripheral equalization during a mammography X-ray examination. High contrast tissue pixel values are removed from the background estimate by finding the minimum intensity values of the pixel located in the neighbourhood, which have approximately the same distance to the skin line. Thus, high attenuating pixel values may be removed from the estimate and replaced by lower attenuating tissue pixel values. After a minimum filtration, a conventional peripheral equalization is performed. This may result in less overshoots and intensity values for higher attenuating structures in the peripheral region may become more consistent with intensity values for higher attenuating structures in the fully compressed region.
    Type: Application
    Filed: November 16, 2015
    Publication date: September 21, 2017
    Inventors: Frank BERGNER, Hanno Heyke HOMANN, André GOOSSEN, Hanns-Ingo MAACK
  • Patent number: 9750466
    Abstract: The present invention relates to a device for tomosynthesis imaging, the device comprising: a mask generator module (101) configured to generate a binary mask based on a geometric three-dimensional model of a scanned object; an image capturing module (102) configured to scan a series of two-dimensional projection images of the object; and an image processing module (103) configured to apply the generated binary mask during a reconstruction of a three-dimensional image volume from the scanned series of two-dimensional projection images and to restrict an extent of the reconstructed image volume to the extent of the geometric model.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: September 5, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hanno Heyke Homann, Frank Bergner, Klaus Erhard, Henning Per Johan Berglund
  • Patent number: 9702950
    Abstract: A magnetic resonance imaging system (300) acquires magnetic resonance data (358) from a subject (318) that may include an electrically conductive object (e.g. an implant or a medical device). The magnetic resonance imaging system includes a radio-frequency transmitter (314) for generating a radio-frequency transmit field for acquiring the magnetic resonance data using a radio-frequency antenna (310). The radio-frequency transmitter has multiple transmit channels. The radio-frequency antenna comprises multiple antenna elements (312) each adapted to connect to an antenna element. The amplitude and phase values of the RF transmit field of each of the transmit channels can be selected such that the magnetic field generated by the RF antenna is minimized at the location of the electrically conductive object, thereby reducing RF heating of the object.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: July 11, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hanno Heyke Homann, Ingmar Graesslin, Ulrich Katscher, Tobias Ratko Voigt, Olaf Helmut Dössel, Sebastian Alfred Seitz
  • Publication number: 20170035372
    Abstract: The present invention relates to a device for tomosynthesis imaging, the device comprising: a mask generator module (101) configured to generate a binary mask based on a geometric three-dimensional model of a scanned object; an image capturing module (102) configured to scan a series of two-dimensional projection images of the object; and an image processing module (103) configured to apply the generated binary mask during a reconstruction of a three-dimensional image volume from the scanned series of two-dimensional projection images and to restrict an extent of the reconstructed image volume to the extent of the geometric model.
    Type: Application
    Filed: April 16, 2015
    Publication date: February 9, 2017
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Hanno Heyke HOMANN, Frank BERGNER, Klaus ERHARD, Henning Per Johan BERGLUND