Patents by Inventor Hanno Homann

Hanno Homann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230050662
    Abstract: A method is provided for creating at least one map of vehicle surroundings with the aid of a control unit. It is checked based on a comparison between received measured data and stored or received map data, whether first features, for example semantic features, are present and complete. First features available in a vehicle surroundings are extracted from the received measured data if no or incomplete map data are present. It is checked whether a localization is possible within the vehicle surroundings with the aid of the first semantic features. If a localization is imprecise or not possible with the aid of the ascertained first features, second features are extracted from the received measured data. A digital map of vehicle surroundings is created based on the ascertained first features and/or the second features. Furthermore, a control unit, a computer program as well as a machine-readable memory medium are provided.
    Type: Application
    Filed: August 9, 2022
    Publication date: February 16, 2023
    Inventors: Pierre Lothe, Erik Einhorn, Hanno Homann, Julian Lindner, Maurice Seer, Moritz Michael Knorr
  • Patent number: 11485373
    Abstract: A method for a position determination of a vehicle, at least one camera and one sensor unit for a global satellite navigation system being situated on the vehicle. The method includes: acquiring at least one camera image of the environment of the vehicle with the aid of the camera, generating a transformed image as a function of the acquired camera image, with the transformed image having a virtual perspective pointing perpendicularly in the downward direction, determining a satellite position of the vehicle through a satellite-based position determination, and providing an aerial image of the environment of the vehicle as a function of the determined satellite position. A detection of a position of the transformed image in the supplied aerial image, and an ascertainment of a vehicle position as a function of the detected position of the transformed image in the supplied aerial image take place subsequently.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: November 1, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Wolfgang Niem, Hanno Homann, Jan Wolter
  • Publication number: 20220276388
    Abstract: The disclosure relates to a method for determining a model for describing at least one environment-specific GNSS profile, comprising at least the following steps: a) receiving at least one measurement data record, which describes at least one GNSS parameter of a GNSS signal between a GNSS satellite and a GNSS receiver, b) using the measurement data record received in step a) to determine at least one model parameter for a model for describing the at least one environment-specific GNSS profile, and c) providing the model for describing the at least one environment-specific GNSS profile.
    Type: Application
    Filed: July 15, 2020
    Publication date: September 1, 2022
    Inventors: Christian Skupin, Hanno Homann, Moritz Michael Knorr
  • Publication number: 20220236073
    Abstract: A method for creating digital maps with the aid of a control unit. Measured data of surroundings are received during a measuring run. A SLAM method is carried out for ascertaining a trajectory of the measuring run based on the received measured data. The received measured data are transformed into a coordinate system of the trajectory. The transformed measured data are used for the purpose of creating an intensity map. Features are extracted from the intensity map and are stored in a feature map. A method for carrying out a localization, a control unit, a computer program as well as a machine-readable memory medium are also described.
    Type: Application
    Filed: May 7, 2020
    Publication date: July 28, 2022
    Inventors: Hanno Homann, Marco Lampacrescia, Peter Biber, Sebastian Scherer
  • Patent number: 11333504
    Abstract: A method is described for updating a digital map for vehicle navigation. The method includes a step of determining an adjustment signal for adjusting a detection range of an environment sensor of a vehicle to a section of an environment of the vehicle that corresponds to an area of the digital map to be updated, using an item of information about the area to be updated, and the method including a step of supplying area data for updating the digital map, the area data representing an image of the section of the environment detected by the environment sensor.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: May 17, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 11335188
    Abstract: A method for the automatic production and updating of a data set for an autonomous vehicle, in which at least one traffic light and a switching state of the at least one traffic light are registered; at least one road marking is ascertained; a trajectory of at least one vehicle traveling ahead is registered; and the collected data are used for producing and updating a data set, and based on the at least one detected trajectory, the at least one switching state of the at least one traffic light and the at least one ascertained road marking, at least one traffic lane is allocated to at least one traffic light. In addition, an autonomous or partially autonomous vehicle is described for carrying out the method.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: May 17, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Fabian Gigengack, Hanno Homann, Max Schneider
  • Publication number: 20210188292
    Abstract: A method for a position determination of a vehicle, at least one camera and one sensor unit for a global satellite navigation system being situated on the vehicle. The method includes: acquiring at least one camera image of the environment of the vehicle with the aid of the camera, generating a transformed image as a function of the acquired camera image, with the transformed image having a virtual perspective pointing perpendicularly in the downward direction, determining a satellite position of the vehicle through a satellite-based position determination, and providing an aerial image of the environment of the vehicle as a function of the determined satellite position. A detection of a position of the transformed image in the supplied aerial image, and an ascertainment of a vehicle position as a function of the detected position of the transformed image in the supplied aerial image take place subsequently.
    Type: Application
    Filed: October 16, 2018
    Publication date: June 24, 2021
    Inventors: Wolfgang Niem, Hanno Homann, Jan Wolter
  • Patent number: 10872477
    Abstract: A method for uploading data of a motor vehicle, including the steps: acquiring surrounding-area data of the motor vehicle with the aid of a sensor device; generating a locational reference for the acquired surrounding-area data; evaluating the acquired surrounding-area data by comparing the acquired surrounding-area data to known surrounding-area data of a data storage unit of a server device; and uploading the acquired surrounding-area data to the server device (40) as a function of the evaluation.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: December 22, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20200132475
    Abstract: A method is described for updating a digital map for vehicle navigation. The method includes a step of determining an adjustment signal for adjusting a detection range of an environment sensor of a vehicle to a section of an environment of the vehicle that corresponds to an area of the digital map to be updated, using an item of information about the area to be updated, and the method including a step of supplying area data for updating the digital map, the area data representing an image of the section of the environment detected by the environment sensor.
    Type: Application
    Filed: March 14, 2018
    Publication date: April 30, 2020
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20200126408
    Abstract: A method for the automatic production and updating of a data set for an autonomous vehicle, in which at least one traffic light and a switching state of the at least one traffic light are registered; at least one road marking is ascertained; a trajectory of at least one vehicle traveling ahead is registered; and the collected data are used for producing and updating a data set, and based on the at least one detected trajectory, the at least one switching state of the at least one traffic light and the at least one ascertained road marking, at least one traffic lane is allocated to at least one traffic light. In addition, an autonomous or partially autonomous vehicle is described for carrying out the method.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 23, 2020
    Applicant: Robert Bosch GmbH
    Inventors: Fabian Gigengack, Hanno Homann, Max Schneider
  • Patent number: 10591913
    Abstract: A method for transmitting, receiving and processing data values, including detecting first data values, which represent at least one first transition from an automated operation of at least one first automated vehicle to a manual operation of the at least one first automated vehicle. The method also includes transmitting the first data values, receiving the first data values and a step of processing the first data values, and a transmission device and a receiving device for carrying out the method for transmitting, receiving and processing data values.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: March 17, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 10591304
    Abstract: A method of an automated motor vehicle for optimized communication from a server of localization reference data for a defined location includes a sensor of the motor vehicle capturing driving environment data, linking the captured driving environment data to location information, based on the linking, localizing the motor vehicle at an achieved localization accuracy, identifying a setpoint localization accuracy at which an operation of the motor vehicle is to be performed, signaling to the server the achieved localization accuracy, and transmitting to the server a request for the localization reference data at the setpoint localization accuracy based on the signaled achieved localization accuracy.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: March 17, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 10464573
    Abstract: A method for providing driving-environment data for a driver-assist system on board a motor vehicle includes determining a route to be traveled; providing driving-environment data along the determined route, driving-environment data along an initial section of a road deviating from the route additionally being provided; determining that the motor vehicle is traveling on the road; determining a new route that includes the traveled road; and providing driving-environment data along the new route.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: November 5, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20190080613
    Abstract: A method is described for operating a vehicle having the steps: reading in at least one adjustable vehicle parameter and at least one fixed vehicle parameter; reading in vehicle-camera data; detecting at least one object in an environment of the vehicle on the basis of the read-in vehicle-camera data. The method includes the additional steps: ascertaining at least two vehicle-setpoint trajectories, at least one adjustable vehicle parameter and at least one fixed vehicle parameter of the vehicle being taken into account in each case; assessing the at least two ascertained vehicle-setpoint trajectories as a function of the at least one detected object; selecting a vehicle-setpoint trajectory as a function of the assessment; controlling at least one adjustable vehicle parameter as a function of the selected vehicle-setpoint trajectory.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 14, 2019
    Inventor: Hanno Homann
  • Publication number: 20180357839
    Abstract: A method for uploading data of a motor vehicle, including the steps: acquiring surrounding-area data of the motor vehicle with the aid of a sensor device; generating a locational reference for the acquired surrounding-area data; evaluating the acquired surrounding-area data by comparing the acquired surrounding-area data to known surrounding-area data of a data storage unit of a server device; and uploading the acquired surrounding-area data to the server device (40) as a function of the evaluation.
    Type: Application
    Filed: May 13, 2016
    Publication date: December 13, 2018
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20180245928
    Abstract: A method of an automated motor vehicle for optimized communication from a server of localization reference data for a defined location includes a sensor of the motor vehicle capturing driving environment data, linking the captured driving environment data to location information, based on the linking, localizing the motor vehicle at an achieved localization accuracy, identifying a setpoint localization accuracy at which an operation of the motor vehicle is to be performed, signaling to the server the achieved localization accuracy, and transmitting to the server a request for the localization reference data at the setpoint localization accuracy based on the signaled achieved localization accuracy.
    Type: Application
    Filed: June 17, 2016
    Publication date: August 30, 2018
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20180050703
    Abstract: A method for providing driving-environment data for a driver-assist system on board a motor vehicle includes determining a route to be traveled; providing driving-environment data along the determined route, driving-environment data along an initial section of a road deviating from the route additionally being provided; determining that the motor vehicle is traveling on the road; determining a new route that includes the traveled road; and providing driving-environment data along the new route.
    Type: Application
    Filed: February 5, 2016
    Publication date: February 22, 2018
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20170168484
    Abstract: A method for transmitting, receiving and processing data values, including detecting first data values, which represent at least one first transition from an automated operation of at least one first automated vehicle to a manual operation of the at least one first automated vehicle. The method also includes transmitting the first data values, receiving the first data values and a step of processing the first data values, and a transmission device and a receiving device for carrying out the method for transmitting, receiving and processing data values.
    Type: Application
    Filed: December 13, 2016
    Publication date: June 15, 2017
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20170168483
    Abstract: A method and device for operating at least one first automated vehicle including receiving data values, which represent at least one transition from an automated operation of at least one second automated vehicle to a manual operation of the at least one second automated vehicle, and operating the at least one first automated vehicle, the operation taking place as a function of the received data values.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 15, 2017
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 9638777
    Abstract: A magnetic resonance method of electric properties tomography imaging of an object includes applying an excitation RF field to the object via a coil at a first spatial coil position (402), acquiring resulting magnetic resonance signals via a receiving channel from the object, determining from the acquired magnetic resonance signals a first phase distribution and a first amplitude of a given magnetic field component of the excitation RF field of the coil at the first coil position (402), repeating these steps with a coil at a second different spatial coil position (404), to obtain a second phase distribution, determining a phase difference between the first and second phase distribution, determining a first and a second complex permittivity of the object, the first complex permittivity comprising the first amplitude of the given magnetic field component and the second complex permittivity comprising the second amplitude of the given magnetic field component and the phase difference, equating the first complex
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: May 2, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Tobias Ratko Voigt, Ulrich Katscher, Thomas Hendrik Rozijn, Paul Royston Harvey, Hanno Homann, Christian Findeklee, Eberhard Sebastian Hansis