Patents by Inventor Hanqing Dong

Hanqing Dong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12275716
    Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of estrogen receptor (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a cereblon, Von Hippel-Lindau ligase-binding moiety, Inhibitors of Apotosis Proteins, or mouse double-minute homolog 2 ligand, which binds to the respective E3 ubiquitin ligase, and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: April 15, 2025
    Assignee: Arvinas Operations, Inc.
    Inventors: Andrew P. Crew, Hanqing Dong, Keith R. Hornberger, Yimin Qian, Jing Wang, Craig M. Crews
  • Patent number: 12264157
    Abstract: The present invention relates to bifunctional compounds, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and/or otherwise inhibited by bifunctional compounds according to the present invention. In particular, the present invention is directed to compounds, which contain on one end a VHL ligand which binds to the ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. The present invention exhibits a broad range of pharmacological activities associated with compounds according to the present invention, consistent with the degradation/inhibition of targeted polypeptides.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: April 1, 2025
    Assignees: Arvinas Operations, Inc., Yale University
    Inventors: Andrew P. Crew, Craig M. Crews, Xin Chen, Hanqing Dong, Caterina Ferraro, Yimin Qian, Kam Siu, Jing Wang, Meizhong Jin, Michael Berlin, Kurt Zimmermann, Lawrence Snyder
  • Patent number: 12239711
    Abstract: The description relates to cereblon E3 ligase binding compounds, including bifunctional compounds comprising the same, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and/or otherwise inhibited by bifunctional compounds according to the present disclosure. In particular, the description provides compounds, which contain on one end a ligand which binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. Compounds can be synthesized that exhibit a broad range of pharmacological activities consistent with the degradation/inhibition of targeted polypeptides of nearly any type.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: March 4, 2025
    Assignee: Arvinas Operations, Inc.
    Inventors: Andrew P. Crew, Craig M. Crews, Hanqing Dong, Keith R. Hornberger, Yimin Qian, Lawrence B. Snyder, Jing Wang
  • Publication number: 20250034096
    Abstract: The present disclosure relates to bifunctional compounds, which find utility to degrade (and inhibit) Androgen Receptor. In particular, the present disclosure is directed to compounds, which contain on one end a cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds Androgen Receptor, such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present disclosure exhibits a broad range of pharmacological activities associated with compounds according to the present disclosure, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Application
    Filed: July 12, 2024
    Publication date: January 30, 2025
    Inventors: Michael BERLIN, Andrew P. CREW, Craig M. CREWS, Hanqing DONG, Keith R. HORNBERGER, Lawrence B. SNYDER, Jing WANG, Kurt ZIMMERMANN
  • Patent number: 12172981
    Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of estrogen receptor (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end at least one of a Von Hippel-Lindau ligand, a cereblon ligand, Inhibitors of Apoptosis Proteins ligand, mouse double-minute homolog 2 ligand, or a combination thereof, which binds to the respective E3 ubiquitin ligase, and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: December 24, 2024
    Assignee: Arvinas Operations, Inc.
    Inventors: Andrew P. Crew, Hanqing Dong, Keith R. Hornberger, Yimin Qian, Jing Wang
  • Patent number: 12171831
    Abstract: The present invention relates to bifunctional compounds, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and/or otherwise inhibited by bifunctional compounds according to the present invention. In particular, the present invention is directed to compounds, which contain on one end a VHL ligand which binds to the ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. The present invention exhibits a broad range of pharmacological activities associated with compounds according to the present invention, consistent with the degradation/inhibition of targeted polypeptides.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: December 24, 2024
    Assignees: Arvinas Operations, Inc., YALE UNIVERSITY
    Inventors: Yimin Qian, Hanqing Dong, Jing Wang, Michael Berlin, Andrew P. Crew, Craig M. Crews
  • Publication number: 20240409529
    Abstract: The present disclosure relates to ultra-pure forms, polymorphs, amorphous forms, and formulations of N-[(1r,4r)-4-(3-chloro-4-cyanophenoxy)cyclohexyl]-6-[4-({4-[2-(2,6-dioxopiperidin-3-yl)-6-fluoro-1,3-dioxo-2,3-dihydro-1H-isoindol-5-yl]piperazin-1-yl}methyl)piperidin-1-yl]pyridazine-3-carboxamide, referred to herein as Compound A: The present disclosure also relates methods of manufacturing and purifying the same, as well as intermediates useful in the synthesis of Compound A. The ultra-pure forms, polymorphs, amorphous forms, and formulations of Compound A can be used as therapeutic agents for the treatment of various diseases and conditions such as cancer.
    Type: Application
    Filed: June 18, 2024
    Publication date: December 12, 2024
    Applicant: Arvinas Operations, Inc.
    Inventors: Laura E.N. ALLAN, Chungpin Herman CHEN, Hanqing DONG, Robert J. DUGUID, John A. GROSSO, Royal J. HASKELL, III, Casey Keith JAGER, Venkata A. KATTUBOINA, Aditya Mohan KAUSHAL, Samuel Elliott KENNEDY, Rhys LLOYD, Miranda Annell NEESER, Yuping QIU, Hayley REECE, Maxwell Marco REEVE, Joseph P. REO, Jerod ROBERTSON, Mohammad Mehdi ZAHEDI
  • Publication number: 20240382599
    Abstract: The present invention relates to bifunctional compounds, which find utility to degrade and (inhibit) TBK1. In particular, the present invention is directed to compounds, which contain on one end an E3 ubiquitin ligase binding moiety which binds to an E3 ubiquitin ligase and on the other end a moiety which binds TBK1 such that TBK1 is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of TBK1. The present invention exhibits a broad range of pharmacological activities associated with compounds according to the present invention, consistent with the degradation/inhibition of TBK1.
    Type: Application
    Filed: April 1, 2024
    Publication date: November 21, 2024
    Inventors: Andrew P. Crew, Kurt Zimmermann, Jing Wang, Michael Berlin, Hanqing Dong, Alexey Ishchenko, Yimin Qian, Saul Jaime-Figueroa, George Burslem, Craig M. Crews
  • Publication number: 20240360152
    Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: May 9, 2024
    Publication date: October 31, 2024
    Inventors: Erika Marina Vieira Araujo, Michael Berlin, Hanqing Dong, Steven M. Sparks, Jing Wang, Wei Zhang
  • Publication number: 20240325547
    Abstract: Bifunctional compounds, which find utility as modulators of B-cell lymphoma 6 protein (BCL6; target protein), are described herein. In particular, the bifunctional compounds of the present disclosure contain on one end a cereblon ligand that binds to the respective E3 ubiquitin ligase and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: March 19, 2024
    Publication date: October 3, 2024
    Applicant: Arvinas Operations, Inc.
    Inventors: MICHAEL BERLIN, Hanqing Dong, Dan Sherman, Lawrence B. Snyder, Jing Wang, Wei Zhang
  • Publication number: 20240299366
    Abstract: The description relates to imide-based compounds, including bifunctional compounds comprising the same, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and/or otherwise inhibited by bifunctional compounds according to the present invention. In particular, the description provides compounds, which contain on one end a ligand which binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. Compounds can be synthesized that exhibit a broad range of pharmacological activities consistent with the degradation/inhibition of targeted polypeptides of nearly any type.
    Type: Application
    Filed: August 28, 2023
    Publication date: September 12, 2024
    Inventors: Andrew P. CREW, Craig M. Crews, Hanqing Dong, Jing Wang, Yimin Qian, Meizhong Jin
  • Patent number: 12077509
    Abstract: The present disclosure relates to bifunctional compounds, which find utility to degrade (and inhibit) Androgen Receptor. In particular, the present disclosure is directed to compounds, which contain on one end a cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds Androgen Receptor, such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present disclosure exhibits a broad range of pharmacological activities associated with compounds according to the present disclosure, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Grant
    Filed: June 22, 2023
    Date of Patent: September 3, 2024
    Assignee: Arvinas Operations, Inc.
    Inventors: Hanqing Dong, Keith R. Hornberger, Lawrence B. Snyder
  • Patent number: 12043612
    Abstract: The present disclosure relates to ultra-pure forms, polymorphs, amorphous forms, and formulations of N-[(1r,4r)-4-(3-chloro-4-cyanophenoxy)cyclohexyl]-6-[4-({4-[2-(2,6-dioxopiperidin-3-yl)-6-fluoro-1,3-dioxo-2,3-dihydro-1H-isoindol-5-yl]piperazin-1-yl}methyl)piperidin-1-yl]pyridazine-3-carboxamide, referred to herein as Compound A: The present disclosure also relates methods of manufacturing and purifying the same, as well as intermediates useful in the synthesis of Compound A. The ultra-pure forms, polymorphs, amorphous forms, and formulations of Compound A can be used as therapeutic agents for the treatment of various diseases and conditions such as cancer.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: July 23, 2024
    Assignee: Arvinas Operations, Inc.
    Inventors: Laura E. N. Allan, Chungpin Herman Chen, Hanqing Dong, John A. Grosso, Royal J. Haskell, III, Rhys LLoyd, Hayley Reece
  • Patent number: 11986531
    Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of Rapidly Accelerated Fibrosarcoma (RAF, such as c-RAF, A-RAF and/or B-RAF; the target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a Von Hippel-Lindau, cereblon, Inhibitors of Apotosis Proteins or mouse double-minute homolog 2 ligand which binds to the respective E3 ubiquitin ligase and on the other end a moiety which binds the target protein RAF, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein, or the constitutive activation of the target protein, are treated or prevented with compounds and compositions of the present disclosure.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: May 21, 2024
    Assignees: Arvinas Operations, Inc., Yale University
    Inventors: Andrew P. Crew, Keith R. Hornberger, Jing Wang, Saul Jaime-Figueroa, Hanqing Dong, Kurt Zimmermann, Craig M. Crews
  • Patent number: 11981683
    Abstract: Bifunctional compounds, which find utility as modulators of leucine-rich repeat kinase 2 (LRRK2), are described herein. In particular, the hetero-bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds LRRK2, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The hetero-bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Grant
    Filed: March 19, 2022
    Date of Patent: May 14, 2024
    Assignee: Arvinas Operations, Inc.
    Inventors: Erika Marina Vieira Araujo, Michael Berlin, Hanqing Dong, Steven M. Sparks, Jing Wang, Wei Zhang
  • Publication number: 20240131023
    Abstract: This disclosure pertains to compounds, the preparation thereof, and the use of these compounds in the treatment of prostate cancer, including metastatic and/or castrate-resistant prostate cancer, in subjects in need thereof.
    Type: Application
    Filed: September 1, 2023
    Publication date: April 25, 2024
    Inventors: LAWRENCE B. Snyder, Andrew P. Crew, Jing Wang, Hanqing Dong
  • Patent number: 11964945
    Abstract: The present disclosure relates to bifunctional compounds, which find utility to degrade and (inhibit) Androgen Receptor. In particular, the present disclosure is directed to compounds, which contain on one end a cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds Androgen Receptor, such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present disclosure exhibits a broad range of pharmacological activities associated with compounds according to the present disclosure, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 23, 2024
    Assignee: Arvinas Operations, Inc.
    Inventors: Andrew P. Crew, Keith R. Hornberger, Lawrence B. Snyder, Kurt Zimmermann, Jing Wang, Hanqing Dong
  • Publication number: 20240091204
    Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of ?-synuclein (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a Von Hippel-Lindau, cereblon. Inhibitors of Apotosis Proteins or mouse double-minute homolog 2 ligand which binds to the respective E3 ubiquitin ligase and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: September 18, 2023
    Publication date: March 21, 2024
    Inventors: Andrew P. Crew, Hanqing Dong, Michael Berlin, Steven M. Sparks
  • Publication number: 20240076281
    Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of estrogen receptor (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end at least one of a Von Hippel-Lindau ligand, a cereblon ligand, inhibitors of apoptosis proteins ligand, mouse double-minute homolog 2 ligand, or a combination thereof, which binds to the respective E3 ubiquitin ligase, and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 7, 2024
    Applicant: Arvinas Operations, Inc.
    Inventors: Yimin QIAN, Hanqing DONG, Jing WANG
  • Publication number: 20240059686
    Abstract: The present invention relates to bifunctional compounds, which find utility to degrade and (inhibit) Androgen Receptor. In particular, the present invention is directed to compounds, which contain on one end a VHL ligand which binds to the ubiquitin ligase and on the other end a moiety which binds Androgen Receptor such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present invention exhibits a broad range of pharmacological activities associated with compounds according to the present invention, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Application
    Filed: December 20, 2022
    Publication date: February 22, 2024
    Applicant: Arvinas Operations, Inc.
    Inventors: Andrew P. CREW, Hanqing DONG, Jing WANG, Xin CHEN, Yimin QIAN, Craig M. CREWS, Michael BERLIN, Meizhong JIN