Patents by Inventor Hanqing Jiang

Hanqing Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160231784
    Abstract: A flexible electronic display is provided. The display includes a substrate having a plurality of rigid portions, at least one display circuit positioned on a surface of each of the plurality of rigid portions, and at least one flexible interconnect electrically connected to the at least one display circuit. The at least one interconnect is flexible such that each of the plurality of rigid portions may be folded or stretched relative to one another.
    Type: Application
    Filed: February 5, 2016
    Publication date: August 11, 2016
    Inventors: Hongyu YU, Hanqing JIANG
  • Patent number: 9324733
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: April 26, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang, Ralph G. Nuzzo, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang
  • Publication number: 20150342050
    Abstract: An origami enabled manufacturing system. The system uses origami design principles to create functional materials, structures, devices and/or systems having an adjustable size and/or shape. An operational device can be coupled to a planar substrate shaped and sized to correspond to a desired origami shape of an origami pattern. A plurality of planar substrates can be coupled together by a plurality of connection members that corresponds to one or more crease of the origami pattern. An array of planar substrates can be formed that convert into a three dimensional structure with origami shape. The resulting three-dimensional structure provides smaller projection area, higher portability and deformability.
    Type: Application
    Filed: January 15, 2014
    Publication date: November 26, 2015
    Inventors: Hanqing Jiang, Hongyu Yu, Goran Konjevod, Yong Xu
  • Publication number: 20150302772
    Abstract: A dynamic and refreshable three-dimensional tactile display uses stimulus sensitive hydrogel blocks as pixels to create a touch surface with elevations from a two-dimensional optical image or from stored data. The movable three-dimensional tactiles are powerful in teaching Science, Technology, Engineering, and Mathematics (STEM) materials to visually impaired and blind students.
    Type: Application
    Filed: November 20, 2013
    Publication date: October 22, 2015
    Inventors: Hongyu Yu, Rogier Windhorst, Debra Baluch, Hanqing Jiang, Lenore Dai
  • Publication number: 20140374872
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: March 20, 2014
    Publication date: December 25, 2014
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: John A. ROGERS, Matthew MEITL, Yugang SUN, Heung Cho KO, Andrew CARLSON, Won Mook CHOI, Mark STOYKOVICH, Hanqing JIANG, Yonggang HUANG, Ralph G. NUZZO, Zhengtao ZHU, Etienne MENARD, Dahl-Young KHANG
  • Patent number: 8792169
    Abstract: Described herein are diffraction gratings and methods for the manufacture thereof. One method comprises applying a force to a substrate to strain the substrate, disposing a thin film on at least a portion of the substrate, and reducing the force applied to the substrate, thereby causing the thin film to buckle.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: July 29, 2014
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Hanqing Jiang, Hongbin Yu, Cunjiang Yu, Kevin O'Brien, Yong-Hang Zhang
  • Publication number: 20140199518
    Abstract: Disclosed herein are articles and methods useful for the lithographic applications. The articles comprise a wrinkling structure and a photosensitive material. The articles and methods provide low cost alternatives to conventional lithographic applications. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: November 15, 2013
    Publication date: July 17, 2014
    Inventors: Hongbin Yu, Hanqing Jiang, Kevin Chen, Ebraheem Ali Azhar, Teng Ma
  • Patent number: 8729524
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: May 20, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang, Ralph G. Nuzzo, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang
  • Patent number: 8685201
    Abstract: Methods are described for addressing the bowing and/or warping of flexible substrates, attached to a rigid carrier, which occurs as a result of the thermal challenges of semiconductor processing. In particular, viscoelastic adhesives are provided which can bond a flexible substrate to a rigid carrier and mediate the thermal mismatch which often is present due to the distinctly different materials properties of most flexible substrates, such as plastic films, with respect to rigid carriers, such as silicon wafers. Assemblies are also provided which are produced according to the methods described herein.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: April 1, 2014
    Assignee: Arizona Board of Regents, a body corporate of the State of Arizona, Acting for and on Behalf of Arizona State University
    Inventors: Shawn O'Rourke, Douglas Loy, Hanqing Jiang
  • Publication number: 20130115512
    Abstract: A flexible silicon anode includes a flexible substrate, a layer of silicon with a thickness of 1 ?m or less adhered to the flexible substrate, and a current collector in contact with the layer of silicon. A lithium ion battery cell includes a flexible silicon anode, a current collector in contact with the layer of silicon; a lithium cathode; a separator between the silicon anode and the lithium cathode; an electrolyte in contact with the silicon anode and the lithium cathode; and an electrical connection between the silicon anode and the lithium cathode. Forming the flexible silicon anode can include etching a silicon-on-insulator structure to form a silicon layer on the silicon substrate, treating the silicon layer, contacting the treated silicon layer with a flexible substrate, and separating the flexible substrate and the silicon substrate, thereby transferring the treated silicon layer from the silicon substrate to the flexible substrate.
    Type: Application
    Filed: March 14, 2011
    Publication date: May 9, 2013
    Applicants: University of Delaware, Arizona Board of Regents for and on Behalf of Arizona State University
    Inventors: Hanqing Jiang, Cunjiang Yu, Bingqing Wei
  • Publication number: 20120212820
    Abstract: Described herein are diffraction gratings and methods for the manufacture thereof. One method comprises applying a force to a substrate to strain the substrate, disposing a thin film on at least a portion of the substrate, and reducing the force applied to the substrate, thereby causing the thin film to buckle.
    Type: Application
    Filed: January 24, 2012
    Publication date: August 23, 2012
    Inventors: Hanqing Jiang, Hongbin Yu, Cunjiang Yu, Kevin O'Brien, Yong-Hang Zhang
  • Patent number: 8217381
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: July 10, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang, Ralph G. Nuzzo, Keon Jae Lee, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang, Seong Jun Kang, Jong Hyun Ahn, Hoon-sik Kim
  • Publication number: 20110064953
    Abstract: Methods are described for addressing the bowing and/or warping of flexible substrates, attached to a rigid carrier, which occurs as a result of the thermal challenges of semiconductor processing. In particular, viscoelastic adhesives are provided which can bond a flexible substrate to a rigid carrier and mediate the thermal mismatch which often is present due to the distinctly different materials properties of most flexible substrates, such as plastic films, with respect to rigid carriers, such as silicon wafers. Assemblies are also provided which are produced according to the methods described herein.
    Type: Application
    Filed: April 6, 2009
    Publication date: March 17, 2011
    Applicant: Arizona Board of Regents, a body Corporate of the State of Arizona acting for and on the behalf of A
    Inventors: Shawn O'Rourke, Douglas Loy, Hanqing Jiang
  • Publication number: 20080157235
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: September 6, 2007
    Publication date: July 3, 2008
    Inventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang