Patents by Inventor Hans Berns

Hans Berns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9410230
    Abstract: A wear-resistant material comprising an alloy that contains: 1.5-5.5 wt. % carbon, 0.1-2.0 wt. % silicon, max. 2.0 wt. % manganese, 3.5-30.0 wt. % chromium, 0.3-10 wt. % molybdenum, 0-10 wt. % tungsten, 0.1-30 wt. % vanadium, 0-12 wt. % niobium, 0.1-12 wt. % titanium and 1.3-3.5 wt. % nickel, the remainder being comprised of iron and production-related impurities, whereby the carbon content fulfills the following condition: CAlloy[w %]=S1+S2+S3 where S1=(Nb+2(Ti+V?0.9))/a, S2=(Mo+W/2+Cr?b)/5, S3=c+(TH?900)·0.0025, where 7<a<9, 6<b<8, 0.3<c<0.5 and 900° C.<TH<1,220° C.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: August 9, 2016
    Assignee: KOPPERN ENTWICKLUNGS GMBH & CO. KG
    Inventors: Werner Theisen, Andreas Packeisen, Hans Berns
  • Publication number: 20080318083
    Abstract: The combined alloying of a CrMnMo steel with carbon and nitrogen creates a stainless austenitic steel of high strength which according to the invention contains (in % by mass) 16-21 Cr, 16-21 Mn, 0.5-2.0 Mo, 0.8-1.1 C+N at a C/N ratio of 0.5-1.1 The steel is subjected to open melting and is suited for uses exhibiting one or more of the following features: strength, ductility, corrosion resistance, wear resistance, non-magnetizability.
    Type: Application
    Filed: August 18, 2005
    Publication date: December 25, 2008
    Applicants: Energietechnik Essen GMBH, Schaffler KG, KSB AKTIENGESELLSCHAFT, BOCHUMER VEREIN VERKEHRSTECHNIK GMBH, KOPPERN ENTWICKLUNGS GMBH & CO. KG
    Inventors: Hans Berns, Valentin G Gavriljuk
  • Publication number: 20080253919
    Abstract: A wear-resistant material comprising an alloy that contains: 1.5-5.5 wt. % carbon, 0.1-2.0 wt. % silicon, max. 2.0 wt. % manganese, 3.5-30.0 wt. % chromium, 0.3-10 wt. % molybdenum, 0-10 wt. % tungsten, 0.1-30 wt. % vanadium, 0-12 wt. % niobium, 0.1-12 wt. % titanium and 1.3-3.5 wt. % nickel, the remainder being comprised of iron and production-related impurities, whereby the carbon content fulfils the following condition: CAlloy [w %]=S1+S2+S3 where S1=(Nb+2(Ti+V?0.9))/a, S2=(Mo+W/2+Cr?b)/5, S3=c+(TH?900)·0.0025, where 7<a<9, 6<b<8, 0.3<c<0.5 and 900° C.<TH<1,220° C. Also. method for producing the wear-resistant material and to uses of the material.
    Type: Application
    Filed: May 2, 2006
    Publication date: October 16, 2008
    Applicant: KOPPERN ENTWICKLUNGS GMBH & CO. KG
    Inventors: Werner Theisen, Andreas Packeisen, Hans Berns
  • Patent number: 6652616
    Abstract: In accordance with the method according to the present invention, particles consisting of ferrotitanium, ferroniobium or ferrovanadium are dispersed and hot compacted in a metal matrix powder consisting of hardening steel or heat-resistant alloys. In so doing, titanium, niobium or vanadium carbide is obtained in situ by a solid-state reaction, i.e. without melting, from the carbon admixed or contained in the matrix powder and the ferroalloy particles. Carbon can also be absorbed from the gaseous phase and it may be substituted by nitrogen. This method permits a reasonably-priced introduction of hard particles into the composite material, the hard particles having a size that is necessary as a protection against scoring wear.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: November 25, 2003
    Assignee: Maschienfabrik Koppern GmbH & Co. KG
    Inventors: Hans Berns, Birgit Wewers
  • Patent number: 6022508
    Abstract: In a method of powder metallurgical manufacturing of a composite material containing particles in a metal matrix, said composite material having a high wear resistance in combination with a high toughness, the powder particles (I) of a first powder of a first metal or alloy having a high content of hard particles (HT) dispersed in the matrix of said first powder particles, are dispersed in a second powder consisting of particles (II) of a second metal or alloy having a low content of hard particles dispersed in the matrix of said second powder particles, wherein a mutual contact between the hard particles and/or between the particles of said first powder is substantially avoided, and the mixture of said first and second powders is transformed to a solid body through hot compaction.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: February 8, 2000
    Assignees: Koppern GmbH & Co., KG, Germany, Erasteel Kloster Aktiebolag, Sweden
    Inventor: Hans Berns
  • Patent number: 5503797
    Abstract: In order to obtain high resistance to corrosion of the surface layer in a stainless steel for case hardening with nitrogen, the steel contains the following alloy components (wt. %):______________________________________ C .ltoreq.0.03 N 0.05 to 0.18 Si .ltoreq.1.0 Mn .ltoreq.1.5 Co 1.0 to 4.0 Cr 11 to 16 Ni 1.0 to 3.0 Mo 0.5 to 2.5 V .ltoreq.0.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: April 2, 1996
    Assignee: FAG Kugelfischer Georg Schafer Aktiengesellschaft
    Inventors: Hans-Werner Zoch, Hans Berns
  • Patent number: 5503687
    Abstract: Enrichment of surface and near surface regions of stainless steel components that nearly have their final shape with dissolved nitrogen at temperatures between 1000.degree. and 1200.degree. C. is provided. In this way, ferritic and martensitic structure portions in the surface zone are changed to austenite. By means of mixed crystal hardening, nitrogen increases the strength of the surface layer that is formed and that at the same time is characterized by the degree of toughness of the austenitic structure. The combination of strength and toughness leads to a significantly increased resistance to wear, especially wear due to impact, cavitation, and impingement of drops. In contrast to carbon, the resistance to corrosion of the surface layer is not adversely affected when nitrogen diffuses in, but rather is even further increased. The thermal treatment process is suitable for increasing the service life of rust proof components in flow-producing mechanisms.
    Type: Grant
    Filed: October 5, 1994
    Date of Patent: April 2, 1996
    Inventor: Hans Berns