Patents by Inventor Hans Christian Hansen Mulvad

Hans Christian Hansen Mulvad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11585976
    Abstract: An optical fiber has corrugations on an outer surface to dissipate a portion of an input light beam, allowing the remaining portion of the light beam to be coupled to the optical fiber. By dissipating the portion of input light, damage to the optical fiber by uncoupled light is reduced.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: February 21, 2023
    Assignees: SAUDI ARABIAN OIL COMPANY, University of Southampton
    Inventors: Hesham Sakr, Hans Christian Hansen Mulvad, Shaif-ul Alam, Lin Xu, Callum Smith, John Hayes, David Richardson, Francesco Poletti, Damian Pablo San Roman Alerigi, Sameeh Issa Batarseh
  • Patent number: 11555958
    Abstract: A nested anti-resonant nodeless hollow core fiber (NANF) enables transmission of multi-kilowatt, continuous wave (CW) light beams operating in wavelengths between 1050 nm and 1100 nm provided by single mode lasers. Such a NANF has little loss over kilometer ranges, and can be employed in long distance subsurface applications, such as in the petroleum industry.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: January 17, 2023
    Assignees: SAUDI ARABIAN OIL COMPANY, University of Southampton
    Inventors: Hesham Sakr, Hans Christian Hansen Mulvad, Shaif-ul Alam, Lin Xu, Callum Smith, John Hayes, David Richardson, Francesco Poletti, Damian Pablo San Roman Alerigi, Sameeh Issa Batarseh
  • Publication number: 20220317365
    Abstract: An optical fiber has corrugations on an outer surface to dissipate a portion of an input light beam, allowing the remaining portion of the light beam to be coupled to the optical fiber. By dissipating the portion of input light, damage to the optical fiber by uncoupled light is reduced.
    Type: Application
    Filed: April 1, 2021
    Publication date: October 6, 2022
    Inventors: Hesham Sakr, Hans Christian Hansen Mulvad, Shaif-ul Alam, Lin Xu, Callum Smith, John Hayes, David Richardson, Francesco Poletti, Damian Pablo San Roman Alerigi, Sameeh Issa Batarseh
  • Publication number: 20220317369
    Abstract: A nested anti-resonant nodeless hollow core fiber (NANF) enables transmission of multi-kilowatt, continuous wave (CW) light beams operating in wavelengths between 1050 nm and 1100 nm provided by single mode lasers. Such a NANF has little loss over kilometer ranges, and can be employed in long distance subsurface applications, such as in the petroleum industry.
    Type: Application
    Filed: April 1, 2021
    Publication date: October 6, 2022
    Inventors: Hesham Sakr, Hans Christian Hansen Mulvad, Shaif-ul Alam, Lin Xu, Callum Smith, John Hayes, David Richardson, Francesco Poletti, Damian Pablo San Roman Alerigi, Sameeh Issa Batarseh
  • Patent number: 10396929
    Abstract: The invention relates to an all-optical regeneration system for regeneration of optical wavelength division multiplexed WDM data signals in an optical WDM communication system. The system comprises a WDM-to-Optical time domain multiplexing OTDM, WDM-to-OTDM, converter, capable of converting an input WDM data signal comprising multiple wavelength channels into an input OTDM data signal comprising multiple time multiplexed time channels. The system further comprises an all-optical regenerator unit being configured for regenerating the input OTDM data signal into an output OTDM data signal. The system additionally comprises an OTDM-to-WDM converter for converting the output OTDM data signal to an output WDM data signal. An input of the all-optical regenerator unit is in optical communication with an output of the WDM-to-OTDM converter, and an output of the all-optical regenerator unit is in optical communication with an input of the OTDM-to-WDM converter.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: August 27, 2019
    Assignee: Danmarks Tekniske Universitet
    Inventors: Leif Katsuo Oxenløwe, Hans Christian Hansen Mulvad, Michael Galili, Zohreh Lali-Dastjerdi, Francesco Da Ros, Evarist Palushani, Christophe Peucheret, Hao Hu
  • Publication number: 20160197698
    Abstract: The invention relates to an all-optical demultiplexer for an optical orthogonal frequency division multiplexing (OFDM) signal having a centre wavelength. The OFDM signal comprises a plurality of subcarriers, each subcarrier having a symbol rate. The demultiplexer is adapted for spectrally magnifying the OFDM signal and comprises a first time lens, a second time lens, and a dispersive element. The dispersive element is arranged in a signal path between the first time lens and the second time lens to form a time lens telescope. The invention further relates to a method of demultiplexing OFDM signals.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 7, 2016
    Inventors: Leif Katsuo Oxenløwe, Evarist Palushani, Hans Christian Hansen Mulvad, Michael Galili
  • Publication number: 20160065324
    Abstract: The invention relates to an all-optical regeneration system for regeneration of optical wavelength division multi-plexed WDM data signals in an optical WDM communication system. The system comprises a WDM-to-Optical time domain multi-plexing OTDM, WDM-to-OTDM, converter, capable of converting an input WDM data signal comprising multiple wavelength channels into an input OTDM data signal comprising multiple time multiplexed time channels. The system further comprises an all-optical regenerator unit being configured for regenerating the input OTDM data signal into an output OTDM data signal. The system additionally comprises an OTDM-to-WDM converter for converting the output OTDM data signal to an output WDM data signal. An input of the all-optical regenerator unit is in optical communication with an output of the WDM-to-OTDM converter, and an output of the all-optical regenerator unit is in optical communication with an input of the OTDM-to-WDM converter.
    Type: Application
    Filed: March 13, 2014
    Publication date: March 3, 2016
    Applicant: Danmarks Tekniske Universitet
    Inventors: Leif Katsuo Oxenløwe, Hans Christian Hansen Mulvad, Michael Galili, Zohreh Lali-Dastjerdi, Francesco Da Ros, Evarist Palushani, Christophe Peucheret, Hao Hu