Patents by Inventor Hans F. Valencia

Hans F. Valencia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10413409
    Abstract: The present invention relates to apparatus and methods for endovascularly delivering and releasing a prosthesis, e.g., an aortic prosthesis, within and/or across a patient's native heart valve, referred to hereinafter as replacing the patient's heart valve. In some embodiments the delivery system comprises a plurality of first actuatable element adapted to engage a plurality of second elements in a first configuration to capture the implant within the delivery system, and wherein the plurality of first actuatable element are adapted to engage the plurality of second elements in a second configuration and to release the implant from the delivery system.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 17, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Hans F. Valencia, Brian D. Brandt, Claudio Argento, Ulrich R. Haug, Jean-Pierre Dueri, Daniel K. Hildebrand, Dwight P. Morejohn, Tom Saul
  • Patent number: 10357359
    Abstract: The present invention provides methods and apparatus for endovascularly replacing a patient's heart valve. The apparatus includes a replacement valve and an anchor having an expandable braid. In some embodiments, the expandable braid is fabricated from a single strand of wire. In some embodiments, the expandable braid comprises at least one turn feature. The anchor and the valve preferably are configured for endovascular delivery and deployment.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: July 23, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED INC
    Inventors: Ulrich R. Haug, Hans F. Valencia, Robert A. Geshlider, Tom Saul, Amr Salahieh, Dwight P. Morejohn
  • Patent number: 10206774
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a delivery catheter having a diameter of 21 french or less; an expandable anchor disposed within the delivery catheter; and a replacement valve disposed within the delivery catheter. The invention also includes a method for endovascularly replacing a heart valve of a patient. In some embodiments the method includes the steps of: inserting a catheter having a diameter no more than 21 french into the patient; endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve through the catheter; and deploying the anchor and the replacement valve.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: February 19, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Patent number: 10039535
    Abstract: Embodiments are described for closing vascular access ports, such as arteriotomies, which involve placement and deployment of an expandable device configured to prevent blood flow across a subject arteriotomy while also keeping disturbance of intravascular flow to a minimum. Suitable prostheses may comprise one or more frames constructed from lengths of flexible materials, such as shape memory alloys or polymers. Such frames may be coupled to sheetlike or tube-like structures configured to spread loads, minimize thrombosis which may be related to intravascular flow, and maintain hemostasis.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: August 7, 2018
    Assignee: ProMed, Inc.
    Inventors: Richard S. Ginn, Nicanor Domingo, Hans F. Valencia, Robert Elliott DeCou, Scott Yerby
  • Patent number: 10039534
    Abstract: Embodiments are described for closing vascular access ports, such as arteriotomies, which involve placement and deployment of an expandable device configured to prevent blood flow across a subject arteriotomy while also keeping disturbance of intravascular flow to a minimum. Suitable prostheses may comprise one or more frames constructed from lengths of flexible materials, such as shape memory alloys or polymers. Such frames may be coupled to sheetlike or tube-like structures configured to spread loads, minimize thrombosis which may be related to intravascular flow, and maintain hemostasis.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: August 7, 2018
    Assignee: ProMed, Inc.
    Inventors: Richard S. Ginn, Nicanor Domingo, Hans F. Valencia, Robert Elliott DeCou, Scott Yerby
  • Publication number: 20180206991
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Application
    Filed: March 21, 2018
    Publication date: July 26, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug
  • Publication number: 20180116792
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: May 3, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Publication number: 20180116793
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: May 3, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Patent number: 9956075
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: May 1, 2018
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug
  • Publication number: 20180110616
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 26, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Publication number: 20180104056
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a delivery catheter having a diameter of 21 french or less; an expandable anchor disposed within the delivery catheter; and a replacement valve disposed within the delivery catheter. The invention also includes a method for endovascularly replacing a heart valve of a patient. In some embodiments the method includes the steps of: inserting a catheter having a diameter no more than 21 french into the patient; endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve through the catheter; and deploying the anchor and the replacement valve.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 19, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Publication number: 20180104052
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 19, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Publication number: 20180104055
    Abstract: The present invention provides methods and apparatus for endovascularly replacing a patient's heart valve. The apparatus includes a replacement valve and an expandable anchor configured for endovascular delivery to a vicinity of the patient's heart valve. In some embodiments, the replacement valve is adapted to wrap about the anchor, for example, by everting during endovascular deployment. In some embodiments, the replacement valve is not connected to expandable portions of the anchor. In some embodiments, the anchor is configured for active foreshortening during endovascular deployment. In some embodiments, the anchor includes expandable lip and skirt regions for engaging the patient's heart valve during deployment. In some embodiments, the anchor comprises a braid fabricated from a single strand of wire. In some embodiments, the apparatus includes a lock configured to maintain anchor expansion. The invention also includes methods for endovascularly replacing a patient's heart valve.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 19, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Ulrich R. Haug, Hans F. Valencia, Robert A. Geshlider, Tom Saul, Dwight P. Morejohn, Kenneth J. Michlitsch
  • Publication number: 20180104051
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 19, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Publication number: 20180056040
    Abstract: An axial support structure for a flexible elongate device includes a plurality of rigid links coupled by pin joints. Each of the plurality of rigid links comprises a shaft, a pair of male joint connectors extending axially from a first end of the shaft, and a pair of female joint connectors extending axially from a second end of the shaft opposite the first end. The female joint connectors are complementary to the male joint connectors and are rotated by 90 degrees relative to the male joint connectors. Each of the plurality of rigid links is rotated by 90 degrees with respect to neighboring links among the plurality of rigid links, thereby aligning each pair of male joint connectors with a neighboring pair of female joint connectors to form the pin joints.
    Type: Application
    Filed: August 24, 2017
    Publication date: March 1, 2018
    Inventors: Carolyn M. FENECH, Hans F. VALENCIA
  • Publication number: 20170340438
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: August 14, 2017
    Publication date: November 30, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Publication number: 20170319336
    Abstract: The present invention provides methods and apparatus for endovascularly replacing a patient's heart valve. The apparatus includes a replacement valve and an expandable anchor configured for endovascular delivery to a vicinity of the patient's heart valve. In some embodiments, the replacement valve is adapted to wrap about the anchor, for example, by everting during endovascular deployment. In some embodiments, the replacement valve is not connected to expandable portions of the anchor. In some embodiments, the anchor is configured for active foreshortening during endovascular deployment. In some embodiments, the anchor includes expandable lip and skirt regions for engaging the patient's heart valve during deployment. In some embodiments, the anchor comprises a braid fabricated from a single strand of wire. In some embodiments, the apparatus includes a lock configured to maintain anchor expansion. The invention also includes methods for endovascularly replacing a patient's heart valve.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Ulrich R. Haug, Hans F. Valencia, Robert A. Geshlider, Tom Saul, Dwight P. Morejohn, Kenneth J. Michlitsch
  • Patent number: 9775592
    Abstract: Embodiments are described for closing vascular access ports, such as arteriotomies, which involve placement and deployment of an expandable device configured to prevent blood flow across a subject arteriotomy while also keeping disturbance of intravascular flow to a minimum. Suitable prostheses may comprise one or more frames constructed from lengths of flexible materials, such as shape memory alloys or polymers. Such frames may be coupled to sheetlike or tube-like structures configured to spread loads, minimize thrombosis which may be related to intravascular flow, and maintain hemostasis.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: October 3, 2017
    Assignee: ProMed, Inc.
    Inventors: Richard S. Ginn, Nicanor Domingo, Hans F. Valencia, Robert Elliott Decou, Scott Yerby
  • Publication number: 20170265996
    Abstract: A method for percutaneously replacing a heart valve of a patient. In some embodiments the method includes the steps of percutaneously delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; expanding the anchor to a deployed configuration in which the anchor contacts tissue at a first anchor site; repositioning the anchor to a second anchor site; and deploying the anchor at the second anchor site.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 21, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Publication number: 20170245999
    Abstract: Configurations are described for conducting minimally invasive medical interventions utilizing elongate instruments and assemblies thereof to stabilize and/or fixate a sacro-iliac joint. In one embodiment, a tool assembly may be advanced from a posterior approach into the SI junction and configured to create a defect defined at least in part by portions of both the sacrum and the ilium, the defect having a three dimensional shape defined in part by at least one noncircular cross sectional shape in a plane substantially perpendicular to the longitudinal axis of the tool assembly. After a defect is created, the tool assembly may be retracted and a prosthesis deployed into the defect.
    Type: Application
    Filed: November 11, 2016
    Publication date: August 31, 2017
    Inventors: Richard S. Ginn, Scott Yerby, Nicanor Domingo, Hans F. Valencia, Robert Elliot DeCou