Patents by Inventor Hans Garmann Torp

Hans Garmann Torp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8764660
    Abstract: An acquisition component is provided that includes an audible sound sensor configured to receive audible sounds within a sensing area and a multi-element ultrasound transducer configured to emit ultrasound signals and to receive reflections of the ultrasound signals in the same sensing area. The audible sound sensor and the multi-element ultrasound transducer may be configured to be simultaneously operable.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: July 1, 2014
    Assignee: General Electric Company
    Inventors: Sigmund Frigstad, Jean-Francois Gelly, Hans Garmann Torp
  • Patent number: 8002704
    Abstract: A method and system for determining contact along a surface of an ultrasound probe are provided. The method includes frequency analyzing ultrasound signals received by the ultrasound probe and displaying indicators of acoustic contact of the ultrasound probe with an object based on the frequency analysis.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: August 23, 2011
    Assignee: General Electric Company
    Inventors: Hans Garmann Torp, Fredrik Orderud, Lasse Lovstakken
  • Patent number: 7678050
    Abstract: A method and apparatus for detecting cardiac events. Ultrasonic data comprising a heart cycle is acquired by a probe. Tissue velocities associated with the ultrasonic data are detected. One of a maximum and a minimum value is detected based on the tissue velocities. A time within the heart cycle associated with the maximum or minimum value is determined, and a cardiac event is detected with respect to the time within the heart cycle and the maximum or minimum value.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: March 16, 2010
    Assignee: General Electric Company
    Inventors: Svein Arne Aase, Sigmund Frigstad, Hans Garmann Torp
  • Publication number: 20090099446
    Abstract: An acquisition component is provided that includes an audible sound sensor configured to receive audible sounds within a sensing area and a multi-element ultrasound transducer configured to emit ultrasound signals and to receive reflections of the ultrasound signals in the same sensing area. The audible sound sensor and the multi-element ultrasound transducer may be configured to be simultaneously operable.
    Type: Application
    Filed: October 16, 2007
    Publication date: April 16, 2009
    Inventors: Sigmund Frigstad, Jean=Francois Gelly, Hans Garmann Torp
  • Patent number: 7261695
    Abstract: A trigger extraction system for obtaining an event trigger for an event occurring in a region of interest includes a processor, a memory coupled to the processor, and a trigger extraction program stored in the memory for execution by the processor. The trigger extraction program includes instructions for accessing ultrasound trigger data from a trigger region intersecting a region of interest, analyzing the trigger data for a trigger characteristic, and storing an event trigger based on the trigger characteristic.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: August 28, 2007
    Assignee: General Electric Company
    Inventors: Svein Brekke, Hans Garmann Torp
  • Patent number: 7022074
    Abstract: A method and apparatus for generating ultrasound pulses comprises producing a multi-level pulse sequence including a series of pulses. The series of pulses includes at least three pulses having three different amplitudes, respectively. The amplitudes are at least one of a positive non-zero voltage, a negative non-zero voltage, and an intermediate level voltage. The multi-level pulse sequence may be produced by a switch network having at least three different input voltage levels. The switch network outputs the multi-level pulse sequence at an output node to a transducer within a probe. Echo signals based on the series of pulses are received, and an ultrasound image is produced based on the received echo signals.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: April 4, 2006
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Kjell Kristoffersen, Hans Garmann Torp
  • Patent number: 7022078
    Abstract: Methods and apparatus are provided in a diagnostic ultrasound system for generating and displaying strain rate spectrums corresponding to the deformation of a tissue structure within a subject, designated by a sample gate, in response to Doppler signals generated by the ultrasound system. Various combinations of several processing techniques are employed including spectral estimation processing such as discrete Fourier transform (DFT) processing, circular convolution, signal scaling/normalization, and complex autocorrelation.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: April 4, 2006
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Andreas Heimdal, Hans Garmann Torp
  • Publication number: 20040254459
    Abstract: A method and apparatus for generating ultrasound pulses comprises producing a multi-level pulse sequence including a series of pulses. The series of pulses includes at least three pulses having three different amplitudes, respectively. The amplitudes are at least one of a positive non-zero voltage, a negative non-zero voltage, and an intermediate level voltage. The multi-level pulse sequence may be produced by a switch network having at least three different input voltage levels. The switch network outputs the multi-level pulse sequence at an output node to a transducer within a probe. Echo signals based on the series of pulses are received, and an ultrasound image is produced based on the received echo signals.
    Type: Application
    Filed: June 12, 2003
    Publication date: December 16, 2004
    Inventors: Kjell Kristoffersen, Hans Garmann Torp
  • Patent number: 6776759
    Abstract: A method and apparatus is provided for generating and displaying filtered strain rate signals corresponding to tissue structure within a subject in response to complex Doppler signals generated by an ultrasound system. Various combinations of several processing techniques are employed including filtering out high strain rate signals due to reverberation and other sources of noise, complex autocorrelation, velocity signal estimation, real strain rate signal estimation, complex strain correlation signal estimation, complex signal averaging, and real signal averaging. Color strain rate imaging is provided using the techniques such that the color images have reduced noise and improved image quality.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: August 17, 2004
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Andreas Heimdal, Hans Garmann Torp
  • Patent number: 6618493
    Abstract: A method and an apparatus for imaging blood motion by displaying an enhanced image of the fluctuating speckle pattern. The first step in the blood motion image processing is high-pass filtering of the signal vector from each range gate. Following high-pass filtering, a speckle signal is formed. The speckle signal is then subjected to a nonlinear scale conversion. The resulting speckle signal is displayed as the desired blood motion image concurrently with a corresponding tissue image.
    Type: Grant
    Filed: November 26, 1999
    Date of Patent: September 9, 2003
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Hans Garmann Torp, Steinar Bjaerum
  • Publication number: 20030163044
    Abstract: Methods and apparatus are provided in a diagnostic ultrasound system for generating and displaying strain rate spectrums corresponding to the deformation of a tissue structure within a subject, designated by a sample gate, in response to Doppler signals generated by the ultrasound system. Various combinations of several processing techniques are employed including spectral estimation processing such as discrete Fourier transform (DFT) processing, circular convolution, signal scaling/normalization, and complex autocorrelation.
    Type: Application
    Filed: February 28, 2002
    Publication date: August 28, 2003
    Inventors: Andreas Heimdal, Hans Garmann Torp
  • Publication number: 20030163043
    Abstract: A method and apparatus is provided for generating and displaying filtered strain rate signals corresponding to tissue structure within a subject in response to complex Doppler signals generated by an ultrasound system. Various combinations of several processing techniques are employed including filtering out high strain rate signals due to reverberation and other sources of noise, complex autocorrelation, velocity signal estimation, real strain rate signal estimation, complex strain correlation signal estimation, complex signal averaging, and real signal averaging. Color strain rate imaging is provided using the techniques such that the color images have reduced noise and improved image quality.
    Type: Application
    Filed: February 27, 2002
    Publication date: August 28, 2003
    Inventors: Andreas Heimdal, Hans Garmann Torp
  • Patent number: 6537217
    Abstract: A method is provided to simultaneously acquire two ultrasound images. A first set of ultrasound pulses are transmitted at a first frame rate utilizing a first mode of operation. The echoes from the first set of ultrasound pulses are received. A second set of ultrasound pulses are transmitted at a second frame rate utilizing a second mode of operation. The first and second frame rates are different. The first set of ultrasound pulses defines an entire image, while the second set of ultrasound pulses defines a partial image. The echoes from the second set of ultrasound pulses are received, and the echoes from the first and second sets of ultrasound pulses are displayed as a single image.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: March 25, 2003
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Steinar Bjærum, Johan Kirkhorn, Hans Garmann Torp, Kjetil Viggen, Bjórn Olstad, Kjell Kristoffersen, Erik N. Steen, Dagfinn Saetre
  • Publication number: 20030045795
    Abstract: A method is provided to simultaneously acquire two ultrasound images. A first set of ultrasound pulses are transmitted at a first frame rate utilizing a first mode of operation. The echoes from the first set of ultrasound pulses are received. A second set of ultrasound pulses are transmitted at a second frame rate utilizing a second mode of operation. The first and second frame rates are different. The first set of ultrasound pulses defines an entire image, while the second set of ultrasound pulses defines a partial image. The echoes from the second set of ultrasound pulses are received, and the echoes from the first and second sets of ultrasound pulses are displayed as a single image.
    Type: Application
    Filed: August 24, 2001
    Publication date: March 6, 2003
    Inventors: Steinar Bjaerum, Johan Kirkhorn, Hans Garmann Torp, Kjetil Viggen, Bjorn Olstad, Kjell Kristoffersen, Erik N. Steen, Dagfinn Saetre
  • Patent number: 6277075
    Abstract: A method and an apparatus for imaging blood motion by displaying an enhanced image of the fluctuating speckle pattern. A continuous stream of data frames, each the result of one scan, is available for processing. For each position in the scan plane, a respective time sequence of signal samples is available for processing. The first step in the blood motion image processing is high-pass filtering of this signal. Following the high-pass filter, a speckle signal is formed, e.g., by calculating the squared magnitude (i.e., power) of the high-pass-filtered signal (I/Q or RF). The resulting speckle signal can then undergo a nonlinear amplitude transformation to form a blood motion imaging signal for display.
    Type: Grant
    Filed: November 26, 1999
    Date of Patent: August 21, 2001
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Hans Garmann Torp, Steinar Bjaerum