Patents by Inventor Hans-Gunter Eckel

Hans-Gunter Eckel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11695349
    Abstract: A method for controlling a power converter, which in particular has partial power converters connected in parallel, is provided. The method includes determining a nominal voltage for the power converter; and dividing an output voltage for the power converter into a number of, in particular equal, voltage ranges. The voltage ranges are limited by a discrete upper voltage limit and a discrete lower voltage limit and the voltage ranges can be adjusted by switching the power converter, in particular the partial power converters. The method includes allocating the nominal voltage a voltage range with a discrete upper and lower voltage limits; allocating a first switch setting to the lower voltage limit; allocating a second switch setting to the upper voltage limit; and switching between the first switch setting and the second switch setting so that the power converter generates an actual voltage corresponding to the nominal voltage.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: July 4, 2023
    Assignee: Wobben Properties GmbH
    Inventors: Yves Hein, Hans-Günter Eckel
  • Publication number: 20220166336
    Abstract: A method for generating at least one AC voltage using at least one inverter device is provided. The inverter device in each case includes comprises at least one voltage input for applying an input voltage, at least one voltage output for outputting an output voltage and at least one DC voltage intermediate circuit for providing an intermediate circuit voltage. The method includes controlling an AC voltage at the voltage output so as to output a first portion of an input power in the form of useful power, or to receive the input power or a portion thereof, and changing a system voltage of the inverter device such that at least one compensation current flows through at least one load resistor, in order thereby to output a second portion of the input power or the entire input power to the at least one load resistor in the form of excess power.
    Type: Application
    Filed: April 1, 2020
    Publication date: May 26, 2022
    Inventors: Hans-Günter ECKEL, Ingmar KAISER
  • Publication number: 20220149749
    Abstract: A method for controlling a power converter, which in particular has partial power converters connected in parallel, is provided. The method includes determining a nominal voltage for the power converter; and dividing an output voltage for the power converter into a number of, in particular equal, voltage ranges. The voltage ranges are limited by a discrete upper voltage limit and a discrete lower voltage limit and the voltage ranges can be adjusted by switching the power converter, in particular the partial power converters. The method includes allocating the nominal voltage a voltage range with a discrete upper and lower voltage limits; allocating a first switch setting to the lower voltage limit; allocating a second switch setting to the upper voltage limit; and switching between the first switch setting and the second switch setting so that the power converter generates an actual voltage corresponding to the nominal voltage.
    Type: Application
    Filed: November 8, 2021
    Publication date: May 12, 2022
    Inventors: Yves HEIN, Hans-Günter ECKEL
  • Patent number: 10262993
    Abstract: A semiconductor device includes a first transistor structure including a first transistor body region of a first conductivity type located within a semiconductor substrate. At least part of the first transistor body region is located between a first source/drain region of the first transistor structure and a second source/drain region of the first transistor structure. The semiconductor device includes a second transistor structure including a second transistor body region of a second conductivity type located within the semiconductor substrate. At least part of the second transistor body region is located between a first source/drain region of the second transistor structure and a second source/drain region of the second transistor structure. At least part of the second source/drain region of the second transistor structure is located between a doping region comprising the second source/drain region of the first transistor structure and the second transistor body region.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: April 16, 2019
    Assignee: Infineon Technologies AG
    Inventors: Marten Müller, Hans-Günter Eckel
  • Patent number: 10033211
    Abstract: A multilevel converter has a central device for controlling operations and a plurality of series-connected sub modules that each has a first switch, a second switch, and a capacitor. At least two of the sub modules form a multi module, wherein, in charging phases and in discharging phases of the multi module, one of the switches of each sub module is switched off and the other switch of each sub module is switched on. The multi module has a control device that is connected to the central device and undertakes control of the sub modules of the multi module on the basis of control signals from the central device. The control device is configured such that it monitors the capacitor voltages of the sub modules and, in the event of an imbalance in the capacitor voltages, brings about balancing.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: July 24, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Hans-Günter Eckel
  • Patent number: 9929677
    Abstract: The invention relates to a active-neutral point clamped converter having at least one half-bridge circuit connected into a DC voltage circuit. Each half-bridge circuit has a high-potential-side input half-bridge and a low-potential-side input half-bridge in series. The half-bridge circuit further has an output half-bridge connected between center taps of the input half-bridges. The total inductance within the output half-bridges and between the three half-bridges is dimensioned such that if any of the power semiconductors of the half-bridge circuit fails, a short-circuit can be reliably disconnected via a shorted circuit formed between the three half-bridges of the half-bridge circuit by the intact power semiconductors in said shorted circuit.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: March 27, 2018
    Assignee: SIEMENS AKTIENGELLSCHAFT
    Inventor: Hans-Günter Eckel
  • Patent number: 9780658
    Abstract: An intermediate voltage circuit current converter having two current converter sections arranged in series on the direct voltage side is disclosed. The current converter section has a capacitor connected in parallel with two bridge modules that are connected in series with each other. The output of the current converter section is located on the series connection between the two bridge modules and the outputs of the two current converter sections are connected to a further bridge module. Each bridge modules comprises a series connection of two power semiconductor units. The intermediate potentials on the connection between the two power semiconductor units in each of the bridge modules are electrically connected to one another by a further capacitor, and the intermediate potential of the further bridge module provides the phase connection of the intermediate voltage circuit current converter for a given phase of the intermediate voltage circuit current converter.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: October 3, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Hans-Günter Eckel, Sidney Gierschner
  • Publication number: 20160315467
    Abstract: An apparatus switches a direct current in a high-voltage line. The apparatus contains a multiplicity of switching units, which are arranged so as to form a series circuit in the high-voltage line. Each switching unit in this case contains a switching element and a surge arrester arranged in a parallel circuit with the switching element, the threshold voltage of the surge arrester being higher than a rated voltage of the switching element. A sum of the rated voltages of the switching elements corresponds at least to an operating voltage of the high-voltage line. The switching elements are mechanical switches, and each mechanical switch contains a contact arrangement having two disconnectable contact pieces and is configured to build up an arcing voltage on disconnection of the contact pieces with a magnitude which is higher than the rated voltage of the mechanical switch.
    Type: Application
    Filed: December 20, 2013
    Publication date: October 27, 2016
    Inventors: Hans-Günter ECKEL, Dominik ERGIN, Herbert GAMBACH, Hans-Joachim KNAAK, Andreas PHILIPP, Hubert SCHIERLING
  • Patent number: 9412853
    Abstract: A protective device for a voltage-controlled semiconductor switch has a gate connection, a power emitter connection, an auxiliary emitter connection and a collector connection. The semiconductor switch can switch a current between the collector connection and the power emitter connection. A voltage-limiting device limits the voltage between the gate connection and the power emitter connection. A deactivation device is connected to the voltage-limiting device and deactivates the voltage-limiting device during a switch-on of the semiconductor switch.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: August 9, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Hans-Günter Eckel, Steffen Pierstorf
  • Publication number: 20160190846
    Abstract: A multilevel converter has a central device for controlling operations and a plurality of series-connected sub modules that each has a first switch, a second switch, and a capacitor. At least two of the sub modules form a multi module, wherein, in charging phases and in discharging phases of the multi module, one of the switches of each sub module is switched off and the other switch of each sub module is switched on. The multi module has a control device that is connected to the central device and undertakes control of the sub modules of the multi module on the basis of control signals from the central device. The control device is configured such that it monitors the capacitor voltages of the sub modules and, in the event of an imbalance in the capacitor voltages, brings about balancing.
    Type: Application
    Filed: August 15, 2013
    Publication date: June 30, 2016
    Inventor: HANS-GÜNTER ECKEL
  • Publication number: 20160181948
    Abstract: The invention relates to a active-neutral point clamped converter having at least one half-bridge circuit connected into a DC voltage circuit. Each half-bridge circuit has a high-potential-side input half-bridge and a low-potential-side input half-bridge in series. The half-bridge circuit further has an output half-bridge connected between center taps of the input half-bridges. The total inductance within the output half-bridges and between the three half-bridges is dimensioned such that if any of the power semiconductors of the half-bridge circuit fails, a short-circuit can be reliably disconnected via a shorted circuit formed between the three half-bridges of the half-bridge circuit by the intact power semiconductors in said shorted circuit.
    Type: Application
    Filed: July 8, 2014
    Publication date: June 23, 2016
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Hans-Günter ECKEL
  • Publication number: 20160094128
    Abstract: An intermediate voltage circuit current converter having two current converter sections arranged in series on the direct voltage side is disclosed. The current converter section has a capacitor connected in parallel with two bridge modules that are connected in series with each other. The output of the current converter section is located on the series connection between the two bridge modules and the outputs of the two current converter sections are connected to a further bridge module. Each bridge modules comprises a series connection of two power semiconductor units. The intermediate potentials on the connection between the two power semiconductor units in each of the bridge modules are electrically connected to one another by a further capacitor, and the intermediate potential of the further bridge module provides the phase connection of the intermediate voltage circuit current converter for a given phase of the intermediate voltage circuit current converter.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 31, 2016
    Applicant: Siemens Aktiengesellschaft
    Inventors: Hans-Günter Eckel, Sidney Gierschner
  • Patent number: 9263969
    Abstract: A submodule for a high-voltage converter with reduced risk of cross-ignition includes first and second series-connected energy storage devices, first and second semiconductor series circuits connected in parallel with the energy storage devices, respectively, and having first and second, and respectively third and fourth, switched power semiconductor switching units. A first terminal connects to a first potential point between the first and second switching units, a second terminal connects to a second potential point between the third and fourth switching units. A connecting switching unit is connected between the first and second semiconductor series circuits. A first connecting branch with a first diode connects the first potential point and the potential point between the energy storage devices. A second connecting branch with a second diode connects the second potential point and the potential point between the energy storage devices.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: February 16, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Hans-Günter Eckel, Herbert Gambach
  • Patent number: 9263933
    Abstract: The invention relates to a method for commutating from a reverse-conducting IGBT (T1) operated in the diode mode to a reverse-conducting IGBT (T2) operated in the IGBT mode. According to the invention the reverse-conducting IGBT (T1) operated in the diode mode is turned off only at the instant a current starts to flow in the reverse-conducting IGBT (T2) operated in the IGBT mode. Accordingly said commutation method is event-driven, as a result of which it is less sensitive to poorly toleranced operating times.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: February 16, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Hans-Günter Eckel
  • Publication number: 20140320198
    Abstract: A protective device for a voltage-controlled semiconductor switch has a gate connection, a power emitter connection, an auxiliary emitter connection and a collector connection. The semiconductor switch can switch a current between the collector connection and the power emitter connection. A voltage-limiting device limits the voltage between the gate connection and the power emitter connection. A deactivation device is connected to the voltage-limiting device and deactivates the voltage-limiting device during a switch-on of the semiconductor switch.
    Type: Application
    Filed: November 7, 2011
    Publication date: October 30, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Hans-Günter Eckel, Steffen Pierstorf
  • Patent number: 8854109
    Abstract: A method for controlling two electrically series-connected reverse-conductive (RC) IGBTs (RC-IBGT) of a half bridge is disclosed, wherein an operating DC voltage is applied across the series connection and one of the two series-connected reverse-conductive IGBTs operates in IGBT mode and another of the two series-connected reverse-conductive IGBTs operates in diode mode, and wherein each of the two reverse-conductive IGBTs has three switching states “+15V”, “0V”, “?15V”. The RC-IGBT T1 operated in diode mode does not go into the switching state (?15V) of highly charged carrier concentration, but instead into a state of medium charge carrier concentration associated with the switching state “0V”, and not into the switching state “?15V”, as is known from conventional methods. This reduces the reverse-recovery without adversely affecting the forward voltage.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: October 7, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Hans-Günter Eckel
  • Publication number: 20130321062
    Abstract: A method for controlling two electrically series-connected reverse-conductive (RC) IGBTs (RC-IBGT) of a half bridge is disclosed, wherein an operating DC voltage is applied across the series connection and one of the two series-connected reverse-conductive IGBTs operates in IGBT mode and another of the two series-connected reverse-conductive IGBTs operates in diode mode, and wherein each of the two reverse-conductive IGBTs has three switching states “+15V”, “0V”, “?15V”. The RC-IGBT T1 operated in diode mode does not go into the switching state (?15V) of highly charged carrier concentration, but instead into a state of medium charge carrier concentration associated with the switching state “0V”, and not into the switching state “?15V”, as is known from conventional methods. This reduces the reverse-recovery without adversely affecting the forward voltage.
    Type: Application
    Filed: January 13, 2012
    Publication date: December 5, 2013
    Applicant: Siemens Aktiengesellschaft
    Inventor: Hans-Günter Eckel
  • Patent number: 8415747
    Abstract: A semiconductor device includes a cathode and an anode. The anode includes a first p-type semiconductor anode region and a second p-type semiconductor anode region. The first p-type semiconductor anode region is electrically connected to an anode contact area. The second p-type semiconductor anode region is electrically coupled to the anode contact area via a switch configured to provide an electrical connection or an electrical disconnection between the second p-type anode region and the anode contact area.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: April 9, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Günter Eckel, Jörg Schumann
  • Publication number: 20130082534
    Abstract: A submodule for a high-voltage converter with reduced risk of cross-ignition includes first and second series-connected energy storage devices, first and second semiconductor series circuits connected in parallel with the energy storage devices, respectively, and having first and second, and respectively third and fourth, switched power semiconductor switching units. A first terminal connects to a first potential point between the first and second switching units, a second terminal connects to a second potential point between the third and fourth switching units. A connecting switching unit is connected between the first and second semiconductor series circuits. A first connecting branch with a first diode connects the first potential point and the potential point between the energy storage devices. A second connecting branch with a second diode connects the second potential point and the potential point between the energy storage devices.
    Type: Application
    Filed: June 11, 2010
    Publication date: April 4, 2013
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Hans-Günter Eckel, Herbert Gambach
  • Publication number: 20120161224
    Abstract: A semiconductor device includes a cathode and an anode. The anode includes a first p-type semiconductor anode region and a second p-type semiconductor anode region. The first p-type semiconductor anode region is electrically connected to an anode contact area. The second p-type semiconductor anode region is electrically coupled to the anode contact area via a switch configured to provide an electrical connection or an electrical disconnection between the second p-type anode region and the anode contact area.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 28, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Hans-Günter Eckel, Jörg Schumann