Patents by Inventor Hans HE
Hans HE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12224758Abstract: The invention provides a power system for monitoring a working environment of a monitored circuit and adjusting a working voltage of the monitored circuit includes: a power circuit, a voltage-controlled oscillator and a counter. The power circuit is configured to output the working voltage to the monitored circuit through a power supply path. The voltage-controlled oscillator is disposed in or around the monitored circuit and is electrically connected to the power supply path and a ground path to which the monitored circuit is electrically connected, and is configured to output an oscillation frequency in accordance with a signal variation on the power supply path and the ground path. The counter is electrically connected to the voltage-controlled oscillator and is configured to generate a counting number signal in accordance with the oscillation frequency and a synchronizing signal, thereby adjusting the working voltage outputted to the monitored circuit.Type: GrantFiled: February 13, 2023Date of Patent: February 11, 2025Assignee: HIMAX TECHNOLOGIES LIMITEDInventors: Jia-Ming He, Yaw-Guang Chang, Yu-Han Chen
-
Publication number: 20240244984Abstract: The present invention relates to a method for connecting an electrical contact to a nanomaterial carried by a substrate. At least one layer of soluble lithography resist is provided on the nanomaterial. An opening in the at least one layer of resist exposes a surface portion of the nanomaterial. At least a portion of the exposed surface portion of the nanomaterial is removed to thereby expose the underlying substrate and an edge of the nanomaterial. A metal is deposited on at least the edge of the nanomaterial and the exposed substrate such that the metal forms an electrical contact with the nanomaterial. Removing at least a portion of the soluble lithography resist from the nanomaterial such that at least a portion of the two-dimensional material is exposed.Type: ApplicationFiled: March 28, 2024Publication date: July 18, 2024Applicant: GRAPHENSIC ABInventors: Samuel LARA-AVILA, Sergey KUBATKIN, Hans HE
-
Patent number: 11950515Abstract: The present invention relates to a method for connecting an electrical contact to a nanomaterial carried by a substrate. At least one layer of soluble lithography resist is provided on the nanomaterial. An opening in the at least one layer of resist exposes a surface portion of the nanomaterial. At least a portion of the exposed surface portion of the nanomaterial is removed to thereby expose the underlying substrate and an edge of the nanomaterial. A metal is deposited on at least the edge of the nanomaterial and the exposed substrate such that the metal forms an electrical contact with the nanomaterial. Removing at least a portion of the soluble lithography resist from the nanomaterial such that at least a portion of the two-dimensional material is exposed.Type: GrantFiled: December 6, 2018Date of Patent: April 2, 2024Assignee: GRAPHENSIC ABInventors: Samuel Lara-Avila, Sergey Kubatkin, Hans He
-
Patent number: 11908926Abstract: The present invention relates to a method for assembling molecules on the surface of a two-dimensional material formed on a substrate, the method comprises: forming a spacer layer comprising at least one of an electrically insulating compound or a semiconductor compound on the surface of the two-dimensional material, depositing molecules on the spacer layer, annealing the substrate with spacer layer and the molecules at an elevated temperature for an annealing time duration, wherein the temperature and annealing time are such that at least a portion of the molecules are allowed to diffuse through the spacer layer towards the surface of the two-dimensional material to assemble on the surface of the two-dimensional material. The invention also relates to an electronic device.Type: GrantFiled: February 3, 2023Date of Patent: February 20, 2024Assignee: GRAPHENSIC ABInventors: Samuel Lara-Avila, Hans He, Sergey Kubatkin
-
Publication number: 20230187544Abstract: The present invention relates to a method for assembling molecules on the surface of a two-dimensional material formed on a substrate, the method comprises: forming a spacer layer comprising at least one of an electrically insulating compound or a semiconductor compound on the surface of the two-dimensional material, depositing molecules on the spacer layer, annealing the substrate with spacer layer and the molecules at an elevated temperature for an annealing time duration, wherein the temperature and annealing time are such that at least a portion of the molecules are allowed to diffuse through the spacer layer towards the surface of the two-dimensional material to assemble on the surface of the two-dimensional material. The invention also relates to an electronic device.Type: ApplicationFiled: February 3, 2023Publication date: June 15, 2023Applicant: GRAPHENSIC ABInventors: Samuel LARA-AVILA, Hans HE, Sergey KUBATKIN
-
Patent number: 11614362Abstract: A method of digital measuring the color of fabrics based on digital camera, includes: making plain fabric samples; obtaining ground-truth color of plain fabrics using a spectrophotometer; capturing a raw format digital image of the plain fabrics using the digital camera and extracting raw camera responses of the plain fabrics; capturing a raw format digital image of a target fabric and extracting the raw camera responses of a ROI in the target fabric; calculating a Euclidean distance and a similarity coefficient between the raw camera responses of the ROI in the target fabric and the plain fabrics; normalizing the Euclidean distance and the similarity coefficient; calculating a weighting coefficient of each color data of the plain fabrics based on the normalized Euclidean distance and similarity coefficient; weighting every color data of plain fabrics with a corresponding weighting coefficient; and summing the weighted color data of the plain fabrics.Type: GrantFiled: July 20, 2022Date of Patent: March 28, 2023Assignee: WUHAN TEXTILE UNIVERSITYInventors: Jin Xing Liang, Zhuan Zuo, Jing Zhou, Xin Rong Hu, Ru Han He, Qi Liu, Li Kun Xie, Jing Yao Cheng, Hong Huan Yang, Xin Ran Li, Ran Jin, Ling Yue Gao
-
Patent number: 11575033Abstract: The present invention relates to a method for assembling molecules on the surface of a two-dimensional material formed on a substrate, the method comprises: forming a spacer layer comprising at least one of an electrically insulating compound or a semiconductor compound on the surface of the two-dimensional material, depositing molecules on the spacer layer, annealing the substrate with spacer layer and the molecules at an elevated temperature for an annealing time duration, wherein the temperature and annealing time are such that at least a portion of the molecules are allowed to diffuse through the spacer layer towards the surface of the two-dimensional material to assemble on the surface of the two-dimensional material. The invention also relates to an electronic device.Type: GrantFiled: December 6, 2018Date of Patent: February 7, 2023Assignee: GRAPHENSIC ABInventors: Samuel Lara-Avila, Hans He, Sergey Kubatkin
-
Publication number: 20210043830Abstract: The present invention relates to a method for connecting an electrical contact to a nanomaterial carried by a substrate. At least one layer of soluble lithography resist is provided on the nanomaterial. An opening in the at least one layer of resist exposes a surface portion of the nanomaterial. At least a portion of the exposed surface portion of the nanomaterial is removed to thereby expose the underlying substrate and an edge of the nanomaterial. A metal is deposited on at least the edge of the nanomaterial and the exposed substrate such that the metal forms an electrical contact with the nanomaterial. Removing at least a portion of the soluble lithography resist from the nanomaterial such that at least a portion of the two-dimensional material is exposed.Type: ApplicationFiled: December 6, 2018Publication date: February 11, 2021Applicant: GRAPHENSIC ABInventors: Samuel LARA-AVILA, Sergey KUBATKIN, Hans HE
-
Publication number: 20200328295Abstract: The present invention relates to a method for assembling molecules on the surface of a two-dimensional material formed on a substrate, the method comprises: forming a spacer layer comprising at least one of an electrically insulating compound or a semiconductor compound on the surface of the two-dimensional material, depositing molecules on the spacer layer, annealing the substrate with spacer layer and the molecules at an elevated temperature for an annealing time duration, wherein the temperature and annealing time are such that at least a portion of the molecules are allowed to diffuse through the spacer layer towards the surface of the two-dimensional material to assemble on the surface of the two-dimensional material. The invention also relates to an electronic device.Type: ApplicationFiled: December 6, 2018Publication date: October 15, 2020Applicant: GRAPHENSIC ABInventors: Samuel LARA-AVILA, Hans HE, Sergey KUBATKIN
-
Publication number: 20150145367Abstract: A rotor for a brushless motor includes a shaft, a rotor core and a number of permanent magnets. The rotor core includes inner and outer annular portions. The inner annular portion has a central hole for receiving the shaft. The outer annular portion includes a number of sector segments arranged in a ring, with adjacent sector segments defining a slot there between for receiving a corresponding permanent magnet. Radially outer ends of adjacent sector segments are interconnected by a connector. The sector segments include first sector segments and second sector segments arranged alternately. The first sector segments are separated from the inner annular portion. The second sector segments are each connected to the inner annular portion by connecting arms.Type: ApplicationFiled: November 28, 2014Publication date: May 28, 2015Inventors: Yue LI, Chui You ZHOU, Jie CHAI, Kwong Yip POON, San Yuan XIAO, Han HE
-
Publication number: 20080048950Abstract: An LED display system with embedded microprocessors is disclosed. It includes an image signal source, an image capture controller, a digital multiplexed encoder, a digital multiplexed decoder and a LED display panel. The image signal source provides signals of static or dynamic images. The image capture controller transmits the control signals and image data. The digital multiplexed encoder is for data encoding and debugging. The digital multiplexed decoder is for data decoding to obtain the color signals, which provides LED with curve correction. The LED display panel displays static or dynamic images. The LED display system could transform images stored in the computer into signals for controlling LED brightness so image data can be transmitted to LED display panel and displayed on the LED display panel successfully.Type: ApplicationFiled: August 23, 2006Publication date: February 28, 2008Inventors: Shuenn-Yuh Lee, Dung-Han He, Tai-Lia Wang