Patents by Inventor Hans Imgrund

Hans Imgrund has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9782236
    Abstract: A method and system are disclosed for finding virtual tooth features on virtual three-dimensional models of the teeth of patients. The tooth features comprise marginal ridges, cusp tips, contact points, central groove and buccal groove. Tooth axes system plays a key role in identifying the tooth features. An iterative method is disclosed for improving the accuracy of the tooth axes system. A virtual three-dimension model preferably obtained by scanning the dentition of a patient forms the basis for determining the tooth features. Tooth features are derived for all categories of teeth including molars, premolars, canines and front teeth. Tooth features are very helpful and used in planning orthodontic treatment. The tooth features are determined automatically using the computerized techniques; and can be manually adjusted when necessary.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: October 10, 2017
    Assignee: OraMetrix, Inc.
    Inventors: Peer Sporbert, Hans Imgrund, Markus Kaufmann
  • Patent number: 9572636
    Abstract: A method and system are disclosed for finding virtual tooth features on virtual three-dimensional models of the teeth of patients. The tooth features comprise marginal ridges, cusp tips, contact points, central groove and buccal groove. Tooth axes system plays a key role in identifying the tooth features. An iterative method is disclosed for improving the accuracy of the tooth axes system. A virtual three-dimension model preferably obtained by scanning the dentition of a patient forms the basis for determining the tooth features. Tooth features are derived for all categories of teeth including molars, premolars, canines and front teeth. Tooth features are very helpful and used in planning orthodontic treatment. The tooth features are determined automatically using the computerized techniques; and can be manually adjusted when necessary.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: February 21, 2017
    Assignee: ORAMETRIX, INC.
    Inventors: Peer Sporbert, Hans Imgrund, Markus Kaufmann
  • Publication number: 20150173855
    Abstract: A method and system are disclosed for finding virtual tooth features on virtual three-dimensional models of the teeth of patients. The tooth features comprise marginal ridges, cusp tips, contact points, central groove and buccal groove. Tooth axes system plays a key role in identifying the tooth features. An iterative method is disclosed for improving the accuracy of the tooth axes system. A virtual three-dimension model preferably obtained by scanning the dentition of a patient forms the basis for determining the tooth features. Tooth features are derived for all categories of teeth including molars, premolars, canines and front teeth. Tooth features are very helpful and used in planning orthodontic treatment. The tooth features are determined automatically using the computerized techniques; and can be manually adjusted when necessary.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 25, 2015
    Applicant: OraMetrix, Inc.
    Inventors: Peer Sporbert, Hans Imgrund, Markus Kaufmann
  • Publication number: 20150145856
    Abstract: A method and system are disclosed for finding virtual tooth features on virtual three-dimensional models of the teeth of patients. The tooth features comprise marginal ridges, cusp tips, contact points, central groove and buccal groove. Tooth axes system plays a key role in identifying the tooth features. An iterative method is disclosed for improving the accuracy of the tooth axes system. A virtual three-dimension model preferably obtained by scanning the dentition of a patient forms the basis for determining the tooth features. Tooth features are derived for all categories of teeth including molars, premolars, canines and front teeth. Tooth features are very helpful and used in planning orthodontic treatment. The tooth features are determined automatically using the computerized techniques; and can be manually adjusted when necessary.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: OraMetrix, Inc.
    Inventors: Peer Sporbert, Hans Imgrund, Markus Kaufmann
  • Patent number: 8998608
    Abstract: Occlusal contact between upper and lower virtual three-dimensional teeth of a patient when the upper and lower arches are in an occlused condition are determined and displayed to the user on a user interface of a general purpose computing device. Various techniques for determining occlusal contacts are described. The areas where occlusal contact occurs is displayed on the user interface in a readily perceptible manner, such as by showing the occlusal contacts in green. If the proposed set-up would result in a interpenetration of teeth in opposing arches, such locations of interpenetration are illustrated in a contrasting color or shading (e.g., red). The ability to calculate distances and display occlusal contacts in a proposed set-up assists the user in planning treatment for the patient. The process can be extended to interproximal contact detection as well. The concepts also apply to dental prosthetics, such as crowns, fillings and dentures.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: April 7, 2015
    Assignee: Orametrix, Inc.
    Inventors: Hans Imgrund, Rüdger Rubbert, Dimitij Kouzian, Peer Sporbert, Stephan Maetzel, Rohit Sachdeva
  • Publication number: 20140379356
    Abstract: A method and workstation for orthodontic treatment planning of a patient. The workstation is based on a computing platform having a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient including image data (3D image data and/or 2D image data). The workstation further includes a set of software instructions providing graphical user interface tools which the user marks a midline and an aesthetic occlusal plane in a two- or three-dimensional virtual model of the patient, marks an occlusal plane in the virtual model; selects a reference tooth in the virtual model; aligns virtual teeth in the virtual model in a proposed arrangement to treat the patient; manages space between the virtual teeth in the proposed arrangement; and repeats one or more of these steps in an iterative fashion to make any further adjustments in the proposed arrangement.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 25, 2014
    Inventors: Rohit Sachdeva, Peer Sporbert, Stephan Maetzel, Hans Imgrund, Claudia Strauss, Phillip Getto, Sanjeev Taneja, Matthew Johnson, John Penman, Justyna Badura, Danesh De Silva
  • Patent number: 8469705
    Abstract: A method and workstation for orthodontic treatment planning of a patient. The workstation is based on a computing platform having a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient including image data (3D image data and/or 2D image data). The workstation further includes a set of software instructions providing graphical user interface tools which the user marks a midline and an aesthetic occlusal plane in a two- or three-dimensional virtual model of the patient, marks an occlusal plane in the virtual model; selects a reference tooth in the virtual model; aligns virtual teeth in the virtual model in a proposed arrangement to treat the patient; manages space between the virtual teeth in the proposed arrangement; and repeats one or more of these steps in an iterative fashion to make any further adjustments in the proposed arrangement.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: June 25, 2013
    Assignee: Orametrix, Inc.
    Inventors: Rohit Sachdeva, Peer Sporbert, Stephan Maetzel, Hans Imgrund, Claudia Strauss, Phillip Getto, Sanjeev Taneja, Matthew Johnson, John Penman, Justyna Badura, Danesh De Silva
  • Patent number: 8465280
    Abstract: A method and workstation for orthodontic treatment planning of a patient. The workstation is based on a computing platform having a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient including image data (3D image data and/or 2D image data). The workstation further includes a set of software instructions providing graphical user interface tools which the user marks a midline and an aesthetic occlusal plane in a two- or three-dimensional virtual model of the patient, marks an occlusal plane in the virtual model; selects a reference tooth in the virtual model; aligns virtual teeth in the virtual model in a proposed arrangement to treat the patient; manages space between the virtual teeth in the proposed arrangement; and repeats one or more of these steps in an iterative fashion to make any further adjustments in the proposed arrangement.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: June 18, 2013
    Assignee: Orametrix, Inc.
    Inventors: Rohit Sachdeva, Peer Sporbert, Stephan Maetzel, Hans Imgrund, Claudia Strauss, Phillip Getto, Sanjeev Taneja, Matthew Johnson, John Penman, Justyna Badura, Danesh De Silva
  • Patent number: 8192197
    Abstract: A method and apparatus is provided for digitally checking the insertion quality of a target customized virtual arch wire designed during treatment planning prior to actually manufacturing the target arch wire. The method includes the steps of digitally simulating the insertion of the customized target virtual arch wire into the virtual brackets placed up on virtual teeth of a patient in an initial state of interest for checking if the arch wire could be inserted into the virtual brackets without conflicts or collisions. The initial state may be a malocclusion state or any intermediate treatment state of the patient. In the event the target virtual arch wire would cause conflicts, then the simulation optimizes the arch wire design in an attempt to eliminate the conflicts. In another aspect, a method is provided for selecting the recommended starting point for inserting the customized arch wire in the brackets placed on the dentition of the patient in the initial state.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: June 5, 2012
    Assignee: Orametrix, Inc.
    Inventors: Peer Sporbert, Dimitij Kouzian, Hans Imgrund, Stephan Maetzel
  • Patent number: 8177551
    Abstract: A method and workstation for evaluation of an orthodontic treatment plan for a patient. The workstation is based on a computing platform having a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient including image data (3D image data and/or 2D image data). The workstation further includes a set of software instructions providing graphical user interface tools by which the user can create a proposed treatment plan (proposed position of the teeth at the end of treatment) in three dimensions. The workstation also provides tools for evaluation of the proposed treatment plan.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: May 15, 2012
    Assignee: Orametrix, Inc.
    Inventors: Rohit Sachdeva, Peer Sporbert, Stephan Maetzel, Hans Imgrund, Phillip Getto, Doke Evan Roberts
  • Patent number: 8142187
    Abstract: A method and apparatus is provided for digitally checking the insertion quality of a target customized virtual arch wire designed during treatment planning prior to actually manufacturing the target arch wire. The method includes the steps of digitally simulating the insertion of the customized target virtual arch wire into the virtual brackets placed up on virtual teeth of a patient in an initial state of interest for checking if the arch wire could be inserted into the virtual brackets without conflicts or collisions. The initial state may be a malocclusion state or any intermediate treatment state of the patient. In the event the target virtual arch wire would cause conflicts, then the simulation optimizes the arch wire design in an attempt to eliminate the conflicts. In another aspect, a method is provided for selecting the recommended starting point for inserting the customized arch wire in the brackets placed on the dentition of the patient in the initial state.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: March 27, 2012
    Assignee: Orametrix, Inc.
    Inventors: Peer Sporbert, Dimitij Kouzian, Hans Imgrund, Stephan Maetzel
  • Patent number: 8121718
    Abstract: Interactive, computer based orthodontist treatment planning, appliance design and appliance manufacturing is described. A scanner is described which acquires images of the dentition which are converted to three-dimensional frames of data. The data from the several frames are registered to each other to provide a complete three-dimensional virtual model of the dentition. Individual tooth objects are obtained from the virtual model. A computer-interactive software program provides for treatment planning, diagnosis and appliance from the virtual tooth models. A desired occlusion for the patient is obtained from the treatment planning software. The virtual model of the desired occlusion and the virtual model of the original dentition provide a base of information for custom manufacture of an orthodontic appliance.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: February 21, 2012
    Assignee: Orametrix, Inc.
    Inventors: Rüdger Rubbert, Thomas Weise, Friedrich Riemeier, Rohit Sachdeva, Werner Butscher, Peer Sporbert, Hans Imgrund, Lutz Pfeil, Hans-Florian Geerdes, Dimitrij Kouzian, Mario Leichner, Stephan Maetzel, Peter See, Jens Troeger
  • Patent number: 8118593
    Abstract: A method and system are disclosed for quickly arriving at a pre-set-up for the orthodontic treatment of a patient based up on the user specified parameters; and thereafter enabling the user in interactively arriving at a final, desired treatment set-up for the patient. Several sub-operations are disclosed for arriving at the orthodontic pre-set-up. These sub-operations can be arranged in a specific sequence for realizing the orthodontic treatment pre-set-up for a patient. According to another aspect of the invention, a global reference system is disclosed that enables consistent treatment planning. The global reference system prevents unintended tooth displacements caused as side effects to the desired tooth displacements.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: February 21, 2012
    Assignee: Orametrix, Inc.
    Inventors: Hans Imgrund, Peer Sporbert, Claudia Strauss
  • Patent number: 8113829
    Abstract: An integrated system is described in which digital image data of a patient, obtained from a variety of image sources, including CT scanner, X-Ray, 2D or 3D scanners and color photographs, are combined into a common coordinate system to create a virtual three-dimensional patient model. Software tools are provided for manipulating the virtual patient model to simulation changes in position or orientation of craniofacial structures (e.g., jaw or teeth) and simulate their affect on the appearance of the patient. The simulation (which may be pure simulations or may be so-called “morphing” type simulations) enables a comprehensive approach to planning treatment for the patient. In one embodiment, the treatment may encompass orthodontic treatment. Similarly, surgical treatment plans can be created. Data is extracted from the virtual patient model or simulations thereof for purposes of manufacture of customized therapeutic devices for any component of the craniofacial structures, e.g., orthodontic appliances.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: February 14, 2012
    Assignee: Orametrix, Inc.
    Inventors: Rohit Sachdeva, Sanjeev Taneja, Peer Sporbert, Phillip Getto, Stephan Maetzel, Hans Imgrund, Charles L. Abraham
  • Patent number: 8029277
    Abstract: It is a common practice with orthodontists in planning treatment for a patient to prescribe dental changes to cure the malocclusion condition of the patient in terms of mesial or distal, buccal or lingual, and occlusal (coronal) or gingival translational displacements; and facial or lingual torque; mesial or distal angulation and mesial or distal rotation displacements. A method and workstation for measuring the dental displacements, or conversely placing the dental elements in desired positions as per the prescriptions for their displacements in a consistent, reproducible and accurate manner is disclosed. A novel orthogonal curvilinear coordinate system is disclosed that enables the measurement of the tooth displacements in conjunction with the individual tooth axes system.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: October 4, 2011
    Assignee: Orametrix, Inc.
    Inventors: Hans Imgrund, Peer Sporbert
  • Publication number: 20100223034
    Abstract: A method and system are disclosed for quickly arriving at a pre-set-up for the orthodontic treatment of a patient based up on the user specified parameters; and thereafter enabling the user in interactively arriving at a final, desired treatment set-up for the patient. Several sub-operations are disclosed for arriving at the orthodontic pre-set-up. These sub-operations can be arranged in a specific sequence for realizing the orthodontic treatment pre-set-up for a patient. According to another aspect of the invention, a global reference system is disclosed that enables consistent treatment planning. The global reference system prevents unintended tooth displacements caused as side effects to the desired tooth displacements.
    Type: Application
    Filed: May 7, 2010
    Publication date: September 2, 2010
    Inventors: Hans Imgrund, Peer Sporbert, Claudia Strauss
  • Publication number: 20100179789
    Abstract: A method and workstation for orthodontic treatment planning of a patient. The workstation is based on a computing platform having a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient including image data (3D image data and/or 2D image data). The workstation further includes a set of software instructions providing graphical user interface tools which the user marks a midline and an aesthetic occlusal plane in a two- or three-dimensional virtual model of the patient, marks an occlusal plane in the virtual model; selects a reference tooth in the virtual model; aligns virtual teeth in the virtual model in a proposed arrangement to treat the patient; manages space between the virtual teeth in the proposed arrangement; and repeats one or more of these steps in an iterative fashion to make any further adjustments in the proposed arrangement.
    Type: Application
    Filed: March 22, 2010
    Publication date: July 15, 2010
    Inventors: Rohit Sachdeva, Peer Sporbert, Stephan Maetzel, Hans Imgrund, Claudia Strauss, Phillip Getto, Sanjeev Taneja, Matthew Johnson, John Penman, Justyna Badura, Danesh De Silva
  • Patent number: 7744369
    Abstract: A method and system are disclosed for quickly arriving at a pre-set-up for the orthodontic treatment of a patient based up on the user specified parameters; and thereafter enabling the user in interactively arriving at a final, desired treatment set-up for the patient. Several sub-operations are disclosed for arriving at the orthodontic pre-set-up. These sub-operations can be arranged in a specific sequence for realizing the orthodontic treatment pre-set-up for a patient. According to another aspect of the invention, a global reference system is disclosed that enables consistent treatment planning. The global reference system prevents unintended tooth displacements caused as side effects to the desired tooth displacements.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Orametrix, Inc.
    Inventors: Hans Imgrund, Peer Sporbert, Claudia Strauss
  • Patent number: 7740476
    Abstract: A method is described for taking a three-dimensional virtual model of the dentition and associated anatomical structures of a patient and isolating individual teeth from the rest of the anatomical structure, e.g. gums, to thereby produce individual, virtual three-dimensional tooth objects. The individual tooth objects can be displayed on the display of an orthodontic workstation and moved independently from each other, and thereby form the basis of planning treatment for the patient. The individual, virtual three-dimensional tooth objects are created by comparing the virtual model of the dentition to virtual, three-dimensional template teeth that are stored in memory in a process described in detail herein. The template teeth can include roots as well as crowns. The template teeth can be stored objects acquired from some external source or alternatively developed from a database of patient scans. Virtual three-dimensional brackets are also stored in the memory of the workstation.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: June 22, 2010
    Assignee: Orametrix, Inc.
    Inventors: Rüdger Rubbert, Thomas Weise, Peer Sporbert, Hans Imgrund, Mario Leichner, Rohit Sachdeva
  • Publication number: 20100153075
    Abstract: A method and system are disclosed for finding virtual tooth features on virtual three-dimensional models of the teeth of patients. The tooth features comprise marginal ridges, cusp tips, contact points, central groove and buccal groove. Tooth axes system plays a key role in identifying the tooth features. An iterative method is disclosed for improving the accuracy of the tooth axes system. A virtual three-dimension model preferably obtained by scanning the dentition of a patient forms the basis for determining the tooth features. Tooth features are derived for all categories of teeth including molars, premolars, canines and front teeth. Tooth features are very helpful and used in planning orthodontic treatment. The tooth features are determined automatically using the computerized techniques; and can be manually adjusted when necessary.
    Type: Application
    Filed: February 25, 2010
    Publication date: June 17, 2010
    Inventors: Peer Sporbert, Hans Imgrund, Markus Kaufmann