Patents by Inventor Hans-Jörg Zander

Hans-Jörg Zander has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240025819
    Abstract: Disclosed is a method for producing olefins having a carbon number of two to eight, in which carbon dioxide and hydrogen are fed to a hydrogenation step, and, wherein portions of carbon dioxide and hydrogen are then converted with one another on a bifunctional catalyst via an oxygenate as an intermediate into the one or more olefins. It is provided that the hydrogen fed to the hydrogenation step is provided by a reforming step, in which methane and water are converted into hydrogen, carbon monoxide, and carbon dioxide, and that the carbon dioxide that is fed to the hydrogenation step is provided in part using the reforming step and in part independently of the reforming step. Providing the portions of hydrogen and carbon dioxide comprises providing, using the reforming step, a gas mixture containing hydrogen, carbon monoxide and carbon dioxide and feeding at least a portion of the gas mixture to the hydrogenation step without separating hydrogen, carbon monoxide, and carbon dioxide.
    Type: Application
    Filed: January 14, 2021
    Publication date: January 25, 2024
    Inventors: Andreas MEISWINKEL, Hans-Jörg ZANDER
  • Publication number: 20230146273
    Abstract: Disclosed is a method for the producingtiona target compoundby oxidative coupling of methane. A starting gas mixture is provided which contains an olefin, carbon monoxide, carbon dioxide and optionally hydrogen, wherein the olefin is subjected to hydroformylation with the carbon monoxide and the hydrogen of the starting mixture to obtain an aldehyde, wherein the paraffin and the olefin have a carbon chain with a first carbon number and the aldehyde has a carbon chain with a second carbon number which is greater by one than the first carbon number. The carbon dioxide present in the starting mixture is removed upstream and/or downstream of the hydroformylation. The carbon dioxide is subjected to dry reforming with methane to obtain carbon monoxide, and that the carbon monoxide subjected to hydroformylation comprises at least part of the carbon monoxide obtained in the dry reforming .
    Type: Application
    Filed: July 16, 2020
    Publication date: May 11, 2023
    Inventors: Andreas MEISWINKEL, Hans-Jörg ZANDER, Ernst HAIDEGGER, Isabel KIENDL
  • Publication number: 20220259127
    Abstract: Disclosed is a method for producing a target compound, in which a first gas mixture includes an olefin having a first carbon number and carbon monoxide, a second gas mixture formed using the first gas mixture and containing the olefin, hydrogen and carbon monoxide, is subjected to conversion steps to obtain a third gas mixture containing a compound with a second carbon number and at least carbon monoxide The conversion includes hydroformylation. The second carbon number is one greater than the first carbon number. Using at least a portion of the third gas mixture, a fourth gas mixture which is depleted in the compound has three carbon atoms, is enriched in carbon monoxide, and is formed using at least a portion of the third gas mixture The carbon monoxide in at least a portion of the fourth gas mixture is subjected to a water gas shift to form hydrogen and carbon dioxide, and that the hydrogen formed in the water gas shift is used in the formation of the second gas mixture.
    Type: Application
    Filed: July 16, 2020
    Publication date: August 18, 2022
    Inventors: Andreas MEISWINKEL, Hans-Jörg ZANDER, Ernst HAIDEGGER, Isabel KIENDL
  • Publication number: 20220234973
    Abstract: The invention relates to a method (100) for producing a target compound, wherein a paraffin is subjected to an oxidative dehydrogenation (1) with oxygen to obtain an olefin, and wherein the olefin is subjected to a hydroformylation (2) with carbon monoxide to obtain an aldehyde, wherein the paraffin and the olefin have a carbon chain having a first carbon number and the aldehyde has a carbon chain having a second carbon number which is one greater than the first carbon number. It is provided that carbon dioxide is formed as a by-product in the oxidative dehydrogenation (1), that the carbon dioxide is subjected to dry reforming (3) at least in part with methane to obtain carbon monoxide and hydrogen, and that the carbon monoxide obtained in the dry reforming (3) and/or the hydrogen obtained in the dry reforming (3) is supplied to the hydroformylation (2). A corresponding installation is also the subject matter of the invention.
    Type: Application
    Filed: July 16, 2020
    Publication date: July 28, 2022
    Inventors: Andreas MEISWINKEL, Hans-Jörg ZANDER, Ernst HAIDEGGER
  • Publication number: 20220152568
    Abstract: A reactor for carrying out an endothermic reaction, in particular a high-temperature reaction, in which a product gas is obtained from a feed gas, wherein: the reactor surrounds a reactor interior; the reactor is configured to provide a reactor bed in a reaction zone of the reactor interior, which reactor bed comprises a large number of solid material particles; the reactor is also configured to guide the feed gas into the reaction zone; in order to heat the feed gas, the reactor is designed to heat the solid material particles in the reaction zone such that, by transferring heat from the solid material particles to the feed gas, the feed gas in the reaction zone can be heated to a reaction temperature in order to participate as a starting product in the endothermic reaction for producing the product gas.
    Type: Application
    Filed: March 31, 2020
    Publication date: May 19, 2022
    Inventors: Hans-Jörg ZANDER, Markus WEIKL, Andreas BODE, Dirk KLINGLER, Matthias KERN, Grigorios KOLIOS, Achim WECHSUNG, Frederik SCHEIFF, Dieter FLICK, Nicolai ANTWEILER, Karsten BÜKER
  • Publication number: 20210230093
    Abstract: The invention relates to a method for producing one or more olefins and one or more carboxylic acids, in which one or more paraffins is or are subjected to an oxidative dehydrogenation. For the oxidative dehydrogenation, a reactor (10) having a plurality of reaction zones (11, 12, 13) is used, a gas mixture comprising the one or more paraffins is successively passed through the reaction zones (11, 12, 13), and at least two of the reaction zones (11, 12, 13) are subject to varying temperature influences. The invention also relates to a corresponding system (100).
    Type: Application
    Filed: June 19, 2019
    Publication date: July 29, 2021
    Inventors: Mathieu ZELLHUBER, Martin SCHUBERT, Andreas MEISWINKEL, Florian WINKLER, Desislava TOTA, Hans-Jörg ZANDER
  • Publication number: 20200222876
    Abstract: The invention relates to a fluid-conducting device (10) having a conduit block (12), within which there are formed multiple primary conduits (14) which extend in a primary conduit direction (100) and which are designed to conduct a primary fluid. The fluid-conducting device furthermore has at least one secondary conduit (16), which extends at least partially in a secondary conduit direction (102) extending at least partially perpendicular to the primary conduit direction (100) and which is designed to conduct or to receive a secondary fluid.
    Type: Application
    Filed: July 6, 2018
    Publication date: July 16, 2020
    Inventors: Manfred STEINBAUER, Hans-Joerg ZANDER, Ole MUELLER-THORWART, Konrad BRAUN, Stefan GEWALD
  • Publication number: 20200115296
    Abstract: A method of producing linear alpha olefins includes: introducing a catalyst stream and a first solvent stream to a reactor, wherein the reactor comprises a distributor; introducing a second solvent stream above the distributor, wherein the catalyst stream, the first solvent stream, and the second solvent stream form a reaction solution; introducing a feed stream to the reactor; passing the feed stream through the distributor; and passing the feed stream through the reaction solution, producing an oligomerization reaction forming the linear alpha olefins.
    Type: Application
    Filed: December 19, 2017
    Publication date: April 16, 2020
    Inventors: Dafer Mubarak Al-Shahrani, Shahid Azam, Hans-Jörg Zander, Wolfgang Muller, Anina Wohl, Andreas Meiswinkel, Ralf Noack, Tobias Meier, Harald Schmaderer
  • Patent number: 10065183
    Abstract: A process for preparing a catalyst provided in the form of a metal oxide catalyst having at least one element selected from Mo, Te, Nb, V, Cr, Dy, Ga, Sb, Ni, Co, Pt and Ce. The catalyst is subjected to an aftertreatment to increase the proportion of the M1 phase, by contacting the catalyst with steam at a pressure below 100 bar or by contacting the catalyst with oxygen to obtain an aftertreated catalyst. The aftertreated catalyst may be used for oxidative dehydrogenation processes.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: September 4, 2018
    Assignees: LINDE AKTIENGESELLSCHAFT, TECHNISCHE UNIVERSITAT MUNCHEN
    Inventors: Hans-Jörg Zander, Florian Winkler, Andreas Meiswinkel, Karl-Heinz Hofmann, Christian Thaller, Johannes A. Lercher, Daniela Hartmann, Andre Cornelis van Veen, Maria Cruz Sanchez-Sanchez
  • Publication number: 20180086856
    Abstract: A method (100) is proposed for the preparation of a polyolefin from olefin monomers, wherein the olefin monomers are subjected to one or more polymerisation steps (13), in which a proportion of the olefin monomers are catalytically reacted to form the polyolefin, while the olefin monomers that are not reacted in the polymerisation step or steps (13) are at least partly transferred into one or more gaseous, monomer-containing purge streams (g, h), which additionally contain(s) one or more aluminium organic compounds, which comprise one or more co-catalysts used in the polymerisation step or steps (13) and/or one or more compounds formed from the co-catalyst(s).
    Type: Application
    Filed: April 13, 2016
    Publication date: March 29, 2018
    Inventors: Andreas MEISWINKEL, Helmut FRITZ, Hans-Jörg ZANDER, Anton KIRZINGER, Josef FREISINGER, Can ULUBAY, Walter HESCH, Thomas WINKLER, Anina WÖHL
  • Patent number: 9593055
    Abstract: The present invention relates to a method for preparing linear alpha-olefins (LAO) by oligomerization of ethylene in the presence of solvent and homogenous catalyst, comprising the steps of: (i) feeding ethylene, solvent and catalyst into an oligomerization reactor, (ii) oligomerizing the ethylene in the reactor, (iii) removing a reactor outlet stream comprising solvent, linear alpha-olefins, ethylene, and catalyst from the reactor via a reactor outlet piping system, (iv) transferring the reactor outlet stream to a catalyst deactivation and removal step, and (v) deactivating and removing the catalyst from the reactor outlet stream, characterized in that at least one organic amine is added into the oligomerization reactor and/or into the reactor outlet piping system.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: March 14, 2017
    Assignees: SAUDI BASIC INDUSTRIES CORPORATION, LINDE AG
    Inventors: Vugar Aliyev, Fuad Mosa, Mohammed Al-Hazmi, Syriac Palackal, Ayed Al-Ayed, Sultan Al-Otaibi, Mohammed Zahoor, Wolfgang Müller, Peter M. Fritz, Heinz Bölt, Anton Wellenhofer, Florian Winkler, Uwe Rosenthal, Hans-Jörg Zander, Normen Peulecke, Bernd H. Müller, Karl-Heinz Hofmann, Helmut Fritz, Carsten Taube, Andreas Meiswinkel, Richard Schneider, Anina Woehl
  • Publication number: 20160207035
    Abstract: A process for preparing a catalyst provided in the form of a metal oxide catalyst having at least one element selected from Mo, Te, Nb, V, Cr, Dy, Ga, Sb, Ni, Co, Pt and Ce. The catalyst is subjected to an aftertreatment to increase the proportion of the M1 phase, by contacting the catalyst with steam at a pressure below 100 bar or by contacting the catalyst with oxygen to obtain an aftertreated catalyst. The aftertreated catalyst may be used for oxidative dehydrogenation processes.
    Type: Application
    Filed: August 7, 2014
    Publication date: July 21, 2016
    Inventors: Hans-Jörg Zander, Florian Winkler, Andreas Meiswinkel, Karl-Heinz Hofmann, Christian Thaller, Johannes A. Lercher, Daniela Hartmann, Andre Cornelis van Veen, Maria Cruz Sanchez-Sanchez
  • Patent number: 9012577
    Abstract: The present invention relates to a method for preparing linear alpha-olefins by oligomerizing of ethylene in the presence of a first organic solvent and a homogenous catalyst in a reactor, characterized in that the reactor overhead is cooled by means of a refrigerant.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: April 21, 2015
    Assignees: Saudi Basic Industries Corporation, Linde AG
    Inventors: Peter Fritz, Heinz Bölt, Karl-Heinz Hoffman, Markus Köhler, Hans-Jörg Zander, Fuad Mosa, Talal Ali
  • Patent number: 8480985
    Abstract: A method and device for the catalytic decomposition of laughing gas in a laughing-gas-bearing gas. The method includes diluting the laughing-gas-bearing gas with a diluting gas, while forming a laughing-gas-bearing charge gas. The laughing-gas bearing charge gas is passed through a heat-exchange step where heat exchange occurs with an exhaust. A heating step occurs for occasional heating of the laughing-gas-bearing charge gas in a fixed-bed reactor for catalytic decomposition of the laughing gas. In some embodiments the diluting gas is dried, and at least a part of the exhaust from the catalytic decomposition of the laughing gas is mixed with the laughing-gas-bearing charge gas upstream of the catalytic decomposition of the laughing gas.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 9, 2013
    Assignee: Linde Aktiengesellschaft
    Inventors: Ulrike Wenning, Hans-Jörg Zander, Anton Wellenhofer, Karl-Heinz Hofmann, Wibke Korn, Franz Beran, Nicole Schödel, Wolfgang Schmehl
  • Patent number: 8460627
    Abstract: A device and method for the decomposition of laughing gas including a gas inlet for supplying a laughing-gas-bearing gas; a first heat-exchanger for the exchange of heat between an exhaust and the laughing-gas-bearing gas; a heating device for occasional heating of the laughing-gas-bearing gas and a fixed-bed reactor in which a catalyst is included in order to decompose the laughing gas. The device also includes a gas outlet, through which exhaust leaving the fixed-bed reactor can be taken away through the heat exchanger. The device may be used to implement a method where the catalyst for decomposition of laughing gas is maintained at temperatures below 800° C. and in which the fixed-bed reactor is arranged as an adiabatic reactor.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: June 11, 2013
    Assignee: Linde Aktiengesellschaft
    Inventors: Franz Beran, Karl-Heinz Hofmann, Nicole Schödel, Wolfgang Schmehl, Ulrike Wenning, Hans-Jörg Zander
  • Publication number: 20120063982
    Abstract: The laughing-gas-containing gas (1) is diluted by means of a diluting gas (2). The diluting gas (2) is virtually free from water fractions in the dryer (3). After feed of the diluting gas (2) via the feed line (13), exhaust gas (8) from the catalytic decomposition (7) is added (4) to the laughing-gas-containing feed gas (12). After addition (4) of the exhaust gas (8) from the catalytic decomposition of laughing gas (7), the laughing-gas-containing feed gas (12) is compressed (5) and passed to the heat exchanger (6). In the heat exchanger (6) the laughing-gas-containing feed gas (12) is preheated by heat exchange with the exhaust gas (8). The exhaust gas (8) is cooled in the heat exchanger (6) in this process. The preheated laughing-gas-containing feed gas (12) is passed via a further optional heater (11) as a feed to the catalytic laughing gas decomposition (7). In order to avoid a concentration build-up, some of the exhaust gas (8) is passed out (9) of the process.
    Type: Application
    Filed: January 5, 2010
    Publication date: March 15, 2012
    Applicant: LINDE AKTIENGESELLSCHAFT
    Inventors: Ulrike Wenning, Hans-Jörg Zander, Anton Wellenhofer, Karl-Heinz Hofmann, Wibke Korn, Franz Beran, Nicole Schödel, Wolfgang Schmehl
  • Publication number: 20120014855
    Abstract: The invention relates to an apparatus and to a process for decomposing dinitrogen monoxide. The apparatus comprises a gas inlet 1 for supplying a nitrogen monoxide-containing gas, a first heat exchange medium 3 for exchanging heat between an offgas and the nitrogen monoxide-containing gas, a heating apparatus 4 for occasional heating of the nitrogen monoxide-containing gas, a fixed bed reactor 5 in which a catalyst is accommodated, in order to decompose the dinitrogen monoxide in the dinitrogen monoxide-containing gas, a gas outlet through which the offgas leaving the fixed bed reactor can be conducted out via the heat exchange medium 3. According to the invention, the catalyst is suitable for decomposing dinitrogen monoxide at temperatures below 800° C., especially preferably below 450° C., more preferably below 400° C. The fixed bed reactor 5 is configured for operation in an adiabatic state.
    Type: Application
    Filed: January 5, 2010
    Publication date: January 19, 2012
    Applicant: LINDE AKTIENGESELLSCHAFT
    Inventors: Franz Beran, Karl-Heinz Hofmann, Nicole Schödel, Wolfgang Schmehl, Ulrike Wenning, Hans-Jörg Zander
  • Publication number: 20110054233
    Abstract: The present invention relates to a method and a reactor system, for the oligomerization of ethylene, comprising oligomerizing ethylene in a reactor in the presence of a solvent and a catalyst composition to produce a liquid product stream comprising linear alpha-olefins, solvent and catalyst composition, and deactivating and extracting the catalyst composition in said liquid product stream by mixing it with a polar phase in a dynamic mixing device having rotor and stator elements comprising concentric tool rings.
    Type: Application
    Filed: December 18, 2008
    Publication date: March 3, 2011
    Inventors: Fuad Mousa, Mohammed Al-Hazmi, Abdullah Al-Thauyyan, Mohammed Al-Musned, Wolfgang Müller, Peter M. Fritz, Heinz Bölt, Anton Wellenhofer, Andreas Meiswinkel, Carsten Taube, Richard Schneider, Florian Winkler, Helmut Fritz, Karl-Heinz Hofmann, Hans-Jörg Zander, Peter Ulbrich, Jan Segatz
  • Publication number: 20110046429
    Abstract: The present invention relates to a method for preparing linear alpha-olefins (LAO) by oligomerization of ethylene in the presence of solvent and homogenous catalyst, comprising the steps of: (i) feeding ethylene, solvent and catalyst into an oligomerization reactor, (ii) oligomerizing the ethylene in the reactor, (iii) removing a reactor outlet stream comprising solvent, linear alpha-olefins, ethylene, and catalyst from the reactor via a reactor outlet piping system, (iv) transferring the reactor outlet stream to a catalyst deactivation and removal step, and (v) deactivating and removing the catalyst from the reactor outlet stream, characterized in that at least one organic amine is added into the oligomerization reactor and/or into the reactor outlet piping system.
    Type: Application
    Filed: January 7, 2009
    Publication date: February 24, 2011
    Inventors: Vugar Aliyev, Fuda Mosa, Mohammed Al-Hazmi, Syriac Palackal, Ayed Al-ayed, Sultan Al-Otaibi, Mohammed Zahoor, Wolfgang Müller, Peter M. Fritz, Heinz Bölt, Anton Wellenhofer, Florian Winkler, Uwe Rosenthal, Hans-Jörg Zander, Normen Peulecke, Bernd H. Müller, Karl-Heinz Hofmann, Helmut Fritz, Carsten Taube, Andreas Meiswinkel, Richard Schneider, Anina Woehl
  • Patent number: 7785550
    Abstract: A process for separating hydrogen from a gas flow having an oxygen constituent and including predominantly hydrogen, nitrogen, oxygen, carbon dioxide, carbon monoxide, methane and/or other hydrocarbons, as well as a device for conducting the process, is disclosed. The gas flow undergoes a process to thermally convert oxygen prior to the pressure swing adsorption process.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 31, 2010
    Assignee: Linde Aktiengesellschaft
    Inventors: Karl-Heinz Hofmann, Paul Leitgeb, Ulrike Wenning, Hans-joerg Zander, Werner Leitmayr