Patents by Inventor Hans-Josef Thomas

Hans-Josef Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11180603
    Abstract: The present patent application relates to a thermoplastic polymer produced at least from diisocyanate and diepoxide using a catalyst, wherein the catalyst is an ionic liquid, to an associated production method and use.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: November 23, 2021
    Assignee: BASF SE
    Inventors: Hans-Josef Thomas, Markus Schuette, Berend Eling, Patrick Matt
  • Patent number: 11142608
    Abstract: Described herein are processes for producing moldings comprising oxazolidinone groups, where polyisocyanate (a) is mixed with at least one organic compound (b) having two or more epoxide groups, at least one catalyst (c) for the isocyanate/epoxide reaction, and optionally auxiliary and additive materials (d) to form a reaction mixture, which is introduced into or applied to a mold and reacted to give moldings including oxazolidinone groups, where the catalyst (c) for the isocyanate/epoxide reaction includes a compound of the general formula [M(R1)(R2)(R3)(R4)]+ [X In]?, where M is a nitrogen atom or a phosphorus atom, R1, R2, R3 and R4 are an organic radical, X is fluorine, chlorine, bromine or iodine, I is iodine, and n stands for rational numbers from 0.1 to 10.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: October 12, 2021
    Inventors: Berend Eling, Hans-Josef Thomas, Peter Deglmann, Janina Hengelsberg, Tristan Pelzer, Gerrit A. Luinstra
  • Publication number: 20210253782
    Abstract: A process for preparing a thermoplastic polymer may involve reacting at least components (i) to (ii): a polyisocyanate composition including at least one diisocyanate (i); an epoxide composition comprising at least one diepoxide (ii); in the presence of a catalyst composition (iii); where epoxide composition (ii) and catalyst composition (iii) are initially charged as a mixture at a temperature in a first temperature range (T1); the polyisocyanate composition (i) is at least partially added while maintaining a temperature in the first temperature range T1; the temperature is raised to a temperature in a final temperature range (Tf); and the remaining polyisocyanate composition (i) is added in the final temperature range. A thermoplastic polymer obtainable by such a process may be used, e.g., for producing a fiber or a shaped body by injection molding, calendering, powder sintering, laser sintering, melt pressing, or extrusion, or as modifier for thermoplastic material.
    Type: Application
    Filed: July 17, 2019
    Publication date: August 19, 2021
    Applicant: BASF SE
    Inventors: Philippe DESBOIS, Hans-Josef THOMAS
  • Publication number: 20200354333
    Abstract: Object of the invention is a process for the manufacturing of a polymer with urethane groups, wherein in a first alternative A) a five-membered cyclic monothiocarbonate B) a compound with at least two amino groups, selected from primary or secondary amino groups, and C) a compound which at least two functional groups that react with a group —SH or, in case of a carbon-carbon triple bond as functional group that react with a group —SH, a compound with at least one carbon-carbon triple bond are reacted or wherein in a second alternative A) a five-membered cyclic monothiocarbonate and D) a compound with at least one primary or secondary amino group and at least one functional group that reacts with a group —SH.
    Type: Application
    Filed: August 7, 2018
    Publication date: November 12, 2020
    Applicant: BASF SE
    Inventors: Peter RUDOLF, Indre THIEL, Hans-Josef THOMAS, Hannes BLATTMANN
  • Patent number: 10822519
    Abstract: The present invention relates to a process for preparing a polyurethane, comprising the reaction of a composition (Z1) at least comprising a compound (P1) reactive toward isocyanates, and a composition (Z2) at least comprising a polyisocyanate, wherein compound (P1) is obtained by the reaction of at least one polyepoxide with a compound (V1) selected from the group consisting of polyetheramines and polyetherols. The present invention further relates to polyurethanes obtained by such a process, and to the use of a polyurethane of the invention for coating of pipelines, as a “field joint” or of subsea equipment, for example “christmas trees”, for the offshore sector, and as a glass-syntactic polyurethane.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: November 3, 2020
    Assignee: BASF SE
    Inventors: Andre Kamm, Hans-Josef Thomas
  • Publication number: 20200291165
    Abstract: A method for preparing a thermoplastic polyoxazolidone, the method including catalytically reacting one or more aromatic diisocyanates and one or more diepoxides, wherein the one or more diepoxides comprise one or more 2-phenylpropane-1,3-diol diglycidyl ether derivatives. The one or more diepoxides further contain one or more diglycidyl ethers of aromatic diols.
    Type: Application
    Filed: September 20, 2018
    Publication date: September 17, 2020
    Applicant: BASF SE
    Inventors: Irene GORMAN, Veit STEGMANN, Hans-Josef THOMAS
  • Publication number: 20200239633
    Abstract: Process for the manufacturing of a polymer with urethane groups, wherein in a first alternative a compound A) with at least two five-membered cyclic monothiocarbonate groups and a compound B) with at least two amino groups, selected from primary or secondary amino groups and optionally a compound C) with at least one functional group that reacts with a group —SH are reacted or wherein in a second alternative a compound A) with at least two five-membered cyclic monothiocarbonate groups or a mixture of a compound A) with a compound A1) with one five-membered cyclic monothiocarbonate group and a compound B) with at least two amino groups, selected from primary or secondary amino groups or a compound B1) with one amino group selected from primary or secondary amino groups or mixtures of compounds B) and B1) and a compound C) with at least two functional groups that react with a group —SH or in case of a carbon-carbon triple bond as functional group that react with a group —SH, a compound C) with at least one carb
    Type: Application
    Filed: August 7, 2018
    Publication date: July 30, 2020
    Applicant: BASF SE
    Inventors: Peter RUDOLF, Hans-Josef THOMAS, Indre THIEL, Hannes BLATTMANN
  • Patent number: 10577471
    Abstract: The invention relates to a process for the curing of latently reactive, heat-curable compositions which do not harden at room temperature. The composition includes a polymer obtainable via reaction of certain compounds having two aldehyde groups with polyacrylate compounds having two or more acrylate groups, and also a compound which bears at least two thiol groups.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: March 3, 2020
    Assignee: BASF SE
    Inventors: Bernhard Feichtenschlager, Alfons Smeets, Bernd Bruchmann, Hans-Josef Thomas, Olivier Fleischel
  • Publication number: 20200010603
    Abstract: Described herein are processes for producing moldings comprising oxazolidinone groups, where polyisocyanate (a) is mixed with at least one organic compound (b) having two or more epoxide groups, at least one catalyst (c) for the isocyanate/epoxide reaction, and optionally auxiliary and additive materials (d) to form a reaction mixture, which is introduced into or applied to a mold and reacted to give moldings including oxazolidinone groups, where the catalyst (c) for the isocyanate/epoxide reaction includes a compound of the general formula [M(R1)(R2)(R3)(R4)]+ [X In]?, where M is a nitrogen atom or a phosphorus atom, R1, R2, R3 and R4 are an organic radical, X is fluorine, chlorine, bromine or iodine, I is iodine, and n stands for rational numbers from 0.1 to 10.
    Type: Application
    Filed: March 15, 2018
    Publication date: January 9, 2020
    Inventors: Berend ELING, Hans-Josef THOMAS, Peter DEGLMANN, Janina HENGELSBERG, Tristan PELZER, Gerrit A. LUINSTRA
  • Publication number: 20190359757
    Abstract: The present patent application relates to a thermoplastic polymer produced at least from diisocyanate and diepoxide using a catalyst, wherein the catalyst is an ionic liquid, to an associated production method and use.
    Type: Application
    Filed: February 14, 2018
    Publication date: November 28, 2019
    Applicant: BASF SE
    Inventors: Hans-Josef THOMAS, Markus SCHUETTE, Berend ELING, Patrick MATT
  • Publication number: 20180237657
    Abstract: The present invention relates to a process for preparing a polyurethane, comprising the reaction of a composition (Z1) at least comprising a compound (P1) reactive toward isocyanates, and a composition (Z2) at least comprising a polyisocyanate, wherein compound (P1) is obtained by the reaction of at least one polyepoxide with a compound (V1) selected from the group consisting of polyetheramines and polyetherols. The present invention further relates to polyurethanes obtained by such a process, and to the use of a polyurethane of the invention for coating of pipelines, as a “field joint” or of subsea equipment, for example “christmas trees”, for the offshore sector, and as a glass-syntactic polyurethane.
    Type: Application
    Filed: March 10, 2016
    Publication date: August 23, 2018
    Inventors: Andre Kamm, Hans-Josef Thomas
  • Publication number: 20180148554
    Abstract: The invention relates to a process for the curing of latently reactive, heat-curable compositions which do not harden at room temperature. The composition includes a polymer obtainable via reaction of certain compounds having two aldehyde groups with polyacrylate compounds having two or more acrylate groups, and also a compound which bears at least two thiol groups.
    Type: Application
    Filed: August 6, 2015
    Publication date: May 31, 2018
    Inventors: Bernhard Feichtenschlager, Alfons Smeets, Bernd Bruchmann, Hans-Josef Thomas, Olivier Fleischel
  • Publication number: 20170306118
    Abstract: The invention relates to a process for the curing of latently reactive, heat-curable compositions which do not harden at room temperature. The composition includes a polymer obtainable via reaction of certain compounds having two aldehyde groups with polyacrylate compounds having two or more acrylate groups, and also a compound which bears at least two thiol groups.
    Type: Application
    Filed: August 6, 2015
    Publication date: October 26, 2017
    Inventors: Bernhard Feichtenschlager, Alfons Smeets, Bernd Bruchmann, Hans-Josef Thomas, Olivier Fleischel
  • Patent number: 9695139
    Abstract: Cured epoxy resins are widespread because of their excellent mechanical and chemical properties. Typically, epoxy resins based on bisphenol A diglycidyl ethers or bisphenol F diglycidyl ethers are used, but these are problematic for many sectors because of their effect on the endocrine system. The present invention relates to glycidyl ethers of limonene-based diols and/or polyols, and to curable epoxy resin compositions based thereon as alternatives to the bisphenol A diglycidyl ethers or bisphenol F diglycidyl ethers, or the epoxy resin compositions based thereon.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: July 4, 2017
    Assignee: BASF SE
    Inventors: Ulrich Karl, Monika Charrak, Hans-Josef Thomas
  • Publication number: 20170037223
    Abstract: A shaped body comprising at least one solid material and a cured epoxy resin wherein the cured epoxy resin is prepared from an epoxy resin composition containing at least one epoxy resin having at least one epoxy group per molecule; at least one curing agent selected from cyanoalkylated polyamines of formula (A) A(NH—X—CN), wherein A is a group selected from aryl, arylalkyl, alkyl, and cycloalkyl, wherein A does not contain a primary amino group, X is alkylene having 1 to 10 C-atoms, and n?2; and at least one accelerator selected from tertiary amines, imidazoles, guanidines, urea compounds, and Lewis acids.
    Type: Application
    Filed: April 15, 2015
    Publication date: February 9, 2017
    Applicant: BASF SE
    Inventors: Monika CHARRAK, Hans-Josef THOMAS, Miran YU, Markus SCHWIND
  • Publication number: 20160194297
    Abstract: Cured epoxy resins are widespread because of their excellent mechanical and chemical properties. Typically, epoxy resins based on bisphenol A diglycidyl ethers or bisphenol F diglycidyl ethers are used, but these are problematic for many sectors because of their effect on the endocrine system. The present invention relates to glycidyl ethers of limonene-based diols and/or polyols, and to curable epoxy resin compositions based thereon as alternatives to the bisphenol A diglycidyl ethers or bisphenol F diglycidyl ethers, or the epoxy resin compositions based thereon.
    Type: Application
    Filed: July 30, 2014
    Publication date: July 7, 2016
    Applicant: BASF SE
    Inventors: Ulrich KARL, Monika CHARRAK, Hans-Josef THOMAS
  • Publication number: 20160194436
    Abstract: Cured epoxy resins are widespread because of their excellent mechanical and chemical properties. Typically, epoxy resins based on bisphenol A diglycidyl ethers or bisphenol F diglycidyl ethers are used, but these are problematic for many sectors because of their effect on the endocrine system. The present invention relates to glycidyl ethers of divinylbenzene-based diols and/or polyols, and to curable epoxy resin compositions based thereon as alternatives to the bisphenol A diglycidyl ethers or bisphenol F diglycidyl ethers, or the epoxy resin compositions based thereon.
    Type: Application
    Filed: August 7, 2014
    Publication date: July 7, 2016
    Applicant: BASF SE
    Inventors: Ulrich KARL, Monika CHARRAK, Hans-Josef THOMAS
  • Patent number: 9150685
    Abstract: Cured epoxy resins are widespread on account of their outstanding mechanical and chemical properties. It is common to use epoxy resins based on bisphenol A diglycidyl ether or bisphenol F diglycidyl ether, but for many sectors these are problematic because of their endocrine effect. The present invention relates to 2-phenyl-1,3-propanediol diglycidyl ether derivates and to curable epoxy resin compositions based thereon, as alternatives to the bisphenol A or bisphenol F diglycidyl ethers and to the epoxy resin compositions based thereon.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: October 6, 2015
    Assignee: BASF SE
    Inventors: Ulrich Karl, Monika Charrak, Hans-Josef Thomas, Nicolas Marion
  • Patent number: 9056960
    Abstract: A method of thermally insulating a transport means or an industrial or plant construction comprises obtaining a nanoporous foam (NP1) by reacting epoxy resin(s) (E) with amphiphilic epoxy resin hardener(s) (H) in water by a phase inversion polymerization wherein the binder content during polymerization is from 15% to 39.9% by weight, and installing the nanoporous polymer foam as a thermal insulation material in transport means or in an industrial or plant construction.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: June 16, 2015
    Assignee: Cognis IP Management GmbH
    Inventors: Paul Birnbrich, Hans-Josef Thomas, Dagmar Stahlhut-Behn
  • Publication number: 20140128503
    Abstract: Cured epoxy resins are widespread on account of their outstanding mechanical and chemical properties. It is common to use epoxy resins based on bisphenol A diglycidyl ether or bisphenol F diglycidyl ether, but for many sectors these are problematic because of their endocrine effect. The present invention relates to 2-phenyl-1,3-propanediol diglycidyl ether derivates and to curable epoxy resin compositions based thereon, as alternatives to the bisphenol A or bisphenol F diglycidyl ethers and to the epoxy resin compositions based thereon.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 8, 2014
    Applicant: BASF SE
    Inventors: Ulrich Karl, Monika Charrak, Hans-Josef Thomas