Patents by Inventor Hans Loeschner

Hans Loeschner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9443699
    Abstract: In a charged-particle multi-beam processing apparatus for exposure of a target with a plurality of parallel particle-optical columns, each column has a beam shaping device forming the shape of the illuminating beam into a desired pattern composed of a multitude of sub-beams, by means of an aperture array device, which defines the shape of a respective sub-beam by means of an array of apertures, and a deflection array device selectively deflecting sub-beams off their nominal paths; thus, only the non-selected sub-beams can reach the target. According to many embodiments of the invention each beam shaping device is provided with a first field-boundary device and a second field-boundary device, which are the first and last plate elements traversed by the beam. One of the first and second field-boundary devices defines a field-free space interval so as to accommodate feeding lines for controlling the deflection array device.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: September 13, 2016
    Assignee: IMS Nanofabrication AG
    Inventors: Elmar Platzgummer, Hans Löschner
  • Publication number: 20150311031
    Abstract: In a charged-particle multi-beam processing apparatus for exposure of a target with a plurality of parallel particle-optical columns the beam shaping device of each column includes an aperture array device provided with at least one array of apertures. Each array of apertures comprises a multitude of apertures for defining the shape of a respective sub-beam which is then imaged onto the target. The apertures form the sub-beam into an oblong shape as seen along the direction of the beam, said oblong shape having a short and a long side, with the long side being at least the double of the short side. The oblong shape thus defined by the apertures is oriented traversing a line grid direction of a line pattern of the target. The apertures of different aperture arrays may have different shapes and/or different orientations.
    Type: Application
    Filed: April 23, 2015
    Publication date: October 29, 2015
    Inventors: Elmar Platzgummer, Hans Löschner
  • Publication number: 20150311030
    Abstract: In a charged-particle multi-beam processing apparatus for exposure of a target with a plurality of parallel particle-optical columns, each column has a beam shaping device forming the shape of the illuminating beam into a desired pattern composed of a multitude of sub-beams, by means of an aperture array device, which defines the shape of a respective sub-beam by means of an array of apertures, and a deflection array device selectively deflecting sub-beams off their nominal paths; thus, only the non-selected sub-beams can reach the target. According to many embodiments of the invention each beam shaping device is provided with a first field-boundary device and a second field-boundary device, which are the first and last plate elements traversed by the beam. One of the first and second field-boundary devices defines a field-free space interval so as to accommodate feeding lines for controlling the deflection array device.
    Type: Application
    Filed: April 23, 2015
    Publication date: October 29, 2015
    Inventors: Elmar Platzgummer, Hans Löschner
  • Patent number: 8546767
    Abstract: A multi-beam pattern definition device (102) for use in a particle-beam processing or inspection apparatus is configured to be irradiated with a beam (lp,bp) of electrically charged particles so as to form a number of beamlets to be imaged to a target. An aperture array means (202) comprises at least two sets of apertures (221, 222) for defining respective beamlets (b1-b5), wherein the sets of apertures comprise a plurality of apertures arranged in interlacing arrangements and the apertures of different sets are offset to each other by a common displacement vector (d12). An opening array means (201) has a plurality of openings (210) configured for the passage of a subset of beamlets corresponding to one of the sets of apertures but lacking openings (being opaque to the beam) at locations corresponding to the other sets of apertures.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: October 1, 2013
    Assignee: IMS Nanofabrication AG
    Inventors: Elmar Platzgummer, Hans Loeschner
  • Publication number: 20110204253
    Abstract: A multi-beam pattern definition device (102) for use in a particle-beam processing or inspection apparatus is configured to be irradiated with a beam (lp,bp) of electrically charged particles so as to form a number of beamlets to be imaged to a target. An aperture array means (202) comprises at least two sets of apertures (221, 222) for defining respective beamlets (b1-b5), wherein the sets of apertures comprise a plurality of apertures arranged in interlacing arrangements and the apertures of different sets are offset to each other by a common displacement vector (d12). An opening array means (201) has a plurality of openings (210) configured for the passage of a subset of beamlets corresponding to one of the sets of apertures but lacking openings (being opaque to the beam) at locations corresponding to the other sets of apertures.
    Type: Application
    Filed: December 2, 2010
    Publication date: August 25, 2011
    Inventors: Elmar Platzgummer, Hans Loeschner
  • Patent number: 7687783
    Abstract: The invention relates to a multi-beam deflector array device for use in a particle-beam exposure apparatus employing a beam of charged particles, the multi-beam deflector array device having a plate-like shape with a membrane region, the membrane region including a first side facing towards the incoming beam of particles, an array of apertures, each aperture allowing passage of a corresponding beamlet formed out of the beam of particles, a plurality of depressions, each depression being associated with at least one aperture, and an array of electrodes, each aperture being associated with at least one electrode and each electrode being located in a depression, the electrodes being configured to realize a non-deflecting state, wherein the particles that pass through the apertures are allowed to travel along a desired path, and a deflecting state, wherein the particles are deflected off the desired path.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: March 30, 2010
    Assignees: IMS Nanofabrication AG, Institut fur Mikroelektronik
    Inventors: Elmar Platzgummer, Hans Löschner, Samuel Kvasnica, Reinhard Springer, Mathias Irmscher, Florian Letzkus, Jörg Butschke
  • Patent number: 7033647
    Abstract: Method of synthesizing carbon nano tubes (CNTs) on a catalyst layer formed on a support member, by catalytic deposition of carbon from a gaseous phase, whereby an ion beam is used prior to, during, and/or after formation of the carbon nano tubes for modifying the physical, chemical, and/or conductive properties of the carbon nanotubes.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: April 25, 2006
    Assignees: Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H., IMS-Ionen Mikrofabrikationas Systeme
    Inventors: Xinhe Tang, Klaus Mauthner, Ernst Hammel, Hans Löschner, Elmar Platzgummer, Gerhard Stengl
  • Patent number: 6909103
    Abstract: A particle-beam exposure apparatus (1) for irradiating a target (41) by means of a beam (2) of energetic electrically charged particles comprises: an illumination system (101) for generating and forming said particles into a directed beam (21); a pattern definition means (102) located after the illumination system for positioning a pattern of apertures transparent to the particles in the path of the directed beam, thus forming a patterned beam (22) emerging from the pattern definition means through the apertures; and a projection system (103) positioned after the pattern definition means (102) for projecting the patterned beam (22) onto a target (41) positioned after the projection system. The apparatus further comprises an acceleration/deceleration means (32) containing an electric potential gradient which is oriented substantially parallel to the path of the structured beam and constant over at least a cross-section of the beam.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: June 21, 2005
    Assignee: IMS-Ionen Mikrofabrikations Systeme GmbH
    Inventors: Elmar Platzgummer, Gerhard Stengl, Hans Loeschner
  • Patent number: 6858118
    Abstract: An apparatus for masked ion-beam lithography comprises a mask maintenance module for prolongation of the lifetime of the stencil mask. The module comprises a deposition means for depositing material to the side of the mask irradiated by the lithography beam, with at least one deposition source being positioned in front of the mask, and further comprises a sputter means in which at least one sputter source, positioned in front of the mask holder means and outside the path of the lithography beam, produces a sputter ion beam directed to the mask in order to sputter off material from said mask in a scanning procedure and compensate for inhomogeneity of deposition.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: February 22, 2005
    Assignee: IMS-Ionen Mikrofabrikations Systeme GmbH
    Inventors: Elmar Platzgummer, Hans Löschner, Gerhard Stengl
  • Publication number: 20050012052
    Abstract: A particle-beam exposure apparatus (1) for irradiating a target (41) by means of a beam (2) of energetic electrically charged particles comprises: an illumination system (101) for generating and forming said particles into a directed beam (21); a pattern definition means (102) located after the illumination system for positioning a pattern of apertures transparent to the particles in the path of the directed beam, thus forming a patterned beam (22) emerging from the pattern definition means through the apertures; and a projection system (103) positioned after the pattern definition means (102) for projecting the patterned beam (22) onto a target (41) positioned after the projection system. The apparatus further comprises an acceleration/ deceleration means (32) containing an electric potential gradient which is oriented substantially parallel to the path of the structured beam and constant over at least a cross-section of the beam.
    Type: Application
    Filed: July 7, 2004
    Publication date: January 20, 2005
    Applicant: IMS-Ionen Mikrofabrikations Systeme GmbH
    Inventors: Elmar Platzgummer, Gerhard Stengl, Hans Loeschner
  • Patent number: 6835508
    Abstract: In order to increase the rigidity of a membrane mask that can be used for ion projection lithography, a second wafer made of the material of the membrane layer is provided in addition to a first wafer. The second wafer is patterned in the same way as the first wafer to form a second carrying ring and is fitted on the membrane layer in a mirror-inverted manner with respect to the first wafer so that the membrane area is arranged between the first and second carrying rings in a centered manner in the direction perpendicular to the membrane plane.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: December 28, 2004
    Assignees: Infineon Technologies AG, IMS-Ionen Mikrofabrikations Systeme Ges.m.b.H.
    Inventors: Jörg Butschke, Albrecht Ehrmann, Ernst Haugeneder, Frank-Michael Kamm, Florian Letzkus, Hans Löschner, Reinhard Springer
  • Patent number: 6768125
    Abstract: A device (102) for defining a pattern, for use in a particle-beam exposure apparatus (100), said device adapted to be irradiated with a beam (lb,pb) of electrically charged particles and let pass the beam only through a plurality of apertures, comprises an aperture array means (203) and a blanking means (202). The aperture array means (203) has a plurality of apertures (21,230) of identical shape defining the shape of beamlets (bm). The blanking means (202) serves to switch off the passage of selected beamlets; it has a plurality of openings (220), each corresponding to a respective aperture (230) of the aperture array means (203) and being provided with a deflection means (221) controllable to deflect particles radiated through the opening off their path (p1) to an absorbing surface within said exposure apparatus (100). The apertures (21) are arranged on the blanking and aperture array means (202,203) within a pattern definition field (pf) being composed of a plurality of staggered lines (p1) of apertures.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: July 27, 2004
    Assignee: IMS Nanofabrication, GmbH
    Inventors: Elmar Platzgummer, Hans Loeschner, Gerhard Stengl, Herbert Vonach, Alfred Chalupka, Gertraud Lammer, Herbert Buschbeck, Robert Nowak, Till Windischbauer
  • Publication number: 20030155534
    Abstract: A device (102) for defining a pattern, for use in a particle-beam exposure apparatus (100), said device adapted to be irradiated with a beam (lb,pb) of electrically charged particles and let pass the beam only through a plurality of apertures, comprises an aperture array means (203) and a blanking means (202). The aperture array means (203) has a plurality of apertures (21,230) of identical shape defining the shape of beamlets (bm). The blanking means (202) serves to switch off the passage of selected beamlets; it has a plurality of openings (220), each corresponding to a respective aperture (230) of the aperture array means (203) and being provided with a deflection means (221) controllable to deflect particles radiated through the opening off their path (p1) to an absorbing surface within said exposure apparatus (100). The apertures (21) are arranged on the blanking and aperture array means (202,203) within a pattern definition field (pf) being composed of a plurality of staggered lines (p1) of apertures.
    Type: Application
    Filed: January 8, 2003
    Publication date: August 21, 2003
    Inventors: Elmar Platzgummer, Hans Loeschner, Gerhard Stengl, Herbert Vonach, Alfred Chalupka, Gertraud Lammer, Herbert Buschbeck, Robert Nowak, Till Windischbauer
  • Patent number: 6455429
    Abstract: Inventive methods are provided for the production of large-area membrane masks, wherein an inexpedient mechanical excessive strain on the membrane or of the membrane layer/etching stop layer/supporting wafer system or the resulting breaking of the components is avoided, which excessive strain occurs particularly due to the employment of an etching cell or generally due to the thin semiconductor layers. The stripping of the semiconductor support layer is preferably performed in two partial steps that are carried out in a mechanically sealed etching cell or with a protective coating, or that one partial step is performed with an etching cell and one with a protective coating, or that the stripping of the semiconductor support layer is performed in a mechanically sealed etching cell initially with a supporting grid and that the supporting grid is removed only after withdrawal from the etching cell.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: September 24, 2002
    Assignee: Institut fur Mikroelektronik Stuttgart
    Inventors: Jörg Butschke, Florian Letzkus, Elisabeth Penteker, Reinhard Springer, Bernd Höfflinger, Hans Löschner
  • Patent number: 6419752
    Abstract: A structuring device (SD) for processing a surface of a substrate (SB), comprising a substrate chamber (VC) for mounting the substrate (SB) and a reaction chamber (GC) enabling a gas reaction at a given operating pressure. The reaction chamber (GC) has at least one gas inlet (GL) for a reaction gas and at least one injection outlet (JL) leading into the substrate chamber, while the substrate chamber (VC) is provided with a pumping system (PP) for maintaining a vacuum within the substrate chamber at a pressure not above the operating pressure of the gas reaction in the reaction chamber (GC). The injection outlet (JL) is provided with at least one injection pipe ending into an injection opening of given width, the injection pipe having a length not smaller than the width of the injection opening, the injection pipe forming the gas particles originating from the gas reaction into a gas jet streaming out of the injection opening.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: July 16, 2002
    Assignees: The Provost, Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin, Universitate Gesamthochshule Kassel, IMS-Ionen Mikrofabrikations Systeme GmbH
    Inventors: Igor V. Shvets, Ivajlo W. Rangelow, Peter Güthner, Jens Voight, Guido Mariotto, Hans Löschner
  • Patent number: 6326632
    Abstract: In a particle-optical imaging lithography system, an illuminating system comprising a particle source and a first electrostatic lens arrangement produces a particle beam which penetrates a mask foil provided with an orifice structure positioned in the particle beam path. This structure is imaged on a substrate plane by a projection system comprising a second electrostatic lens arrangement. The first and second lens arrangements each comprise, on their respective sides facing the mask holding device, at least one pre- and post-mask electrode, respectively. By applying different electrostatic potentials to the pre- and post-mask electrodes and to the mask foil, the mask foil and the pre-mask electrode form a grid lens with negative refracting power, and the mask foil and the post-mask electrode also form a grid lens with negative refracting power.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: December 4, 2001
    Assignee: IMS-Ionen Mikrofabrikations Systeme GmbH
    Inventors: Herbert Buschbeck, Alfred Chalupka, Gertraud Lammer, Hans Loeschner, Gerhard Stengl
  • Patent number: 5874739
    Abstract: An arrangement for shadow-casting lithography by focusing electrically charged particles for the purpose of imaging structures of a mask on a substrate disposed immediately to the rear thereof, comprising a particle source (2) and an extraction system (3) which produces a divergent particle beam issuing from a substantially point-shaped virtual source, and comprising a lens (6) for focusing the divergent particle beam which comprises an electrode arrangement (6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h) which includes at least one electrostatic collector lens (6a to 6f in conjunction with an electrostatic diverging lens (6g, 6h) in order to be able to compensate lens errors of the collector lens in a purposeful manner with respect to lens errors of the diverging lens and to render possible a predeterminable change in the imaging scale.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: February 23, 1999
    Assignee: Ims-Ionen Mikrofabrikations Systems BMGH
    Inventors: Herbert Buschbeck, Alfred Chalupka, Hans Loeschner, Gerhard Stengl, Herbert Vonach
  • Patent number: 5742062
    Abstract: An arrangement for masked beam lithography by means of electrically charged particles for the imaging of structures of a mask on a substrate arranged behind it, with a substantially punctiform particle source (Q) and an extraction system (Ex) for a specific type of charged particles which leave the source (Q) in the form of a divergent particle beam, and with an electrode arrangement (B, B', El.sub.1, El.sub.2, E.sub.3, . . . El.sub.n) for concentrating the divergent particle beam into a particle beam which is at least approximately parallel, by means of which an electrostatic acceleration field (E) is generated, the potential (U) of which in the beam direction has a constant gradient at least in parts and perpendicular to the beam direction is substantially constant at least within the beam cross-section. The electrode arrangement can be formed for example by a plurality of coaxial ring electrodes (El.sub.1, El.sub.2, El.sub.3, . . . El.sub.
    Type: Grant
    Filed: February 8, 1996
    Date of Patent: April 21, 1998
    Assignee: IMS Mikrofabrikations Systeme GmbH
    Inventors: Gerhard Stengl, Alfred Chalupka, Herbert Vonach, Hans Loeschner