Patents by Inventor Hans Valencia

Hans Valencia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070010877
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Application
    Filed: September 14, 2006
    Publication date: January 11, 2007
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans Valencia, Daniel Hildebrand, Brian Brandt, Dwight Morejohn, Claudio Argento, Tom Saul, Ulrich Haug
  • Publication number: 20060173524
    Abstract: An apparatus for endovascularly replacing a patient's heart valve. In some embodiments, the apparatus includes a replacement heart valve implant comprising a valve and an expandable anchor; and a deployment tool adapted to endovascularly deliver the replacement heart valve implant to an implant site within the patient, the deployment tool comprising an actuator adapted to exert an axially directed force on the anchor. The invention also provides a method for endovascularly replacing a heart valve of a patient. In some embodiments, the method includes the steps of endovascularly delivering a replacement heart valve implant having a valve and an anchor to an implant site within the patient; and applying an axially directed force from an actuator outside of the patient to the anchor. In invention also provides deployment tools for performing the method.
    Type: Application
    Filed: February 2, 2006
    Publication date: August 3, 2006
    Inventors: Amr Salahieh, Dwight Morejohn, Ulrich Haug, Brian Brandt, Hans Valencia, Tom Saul
  • Publication number: 20060036315
    Abstract: The present invention is directed to a stent for use in a bifurcated body lumen having a main branch and a side branch. The stent comprises a radially expandable generally tubular stent body having proximal and distal opposing ends with a body wall having a surface extending therebetween. The surface has a geometrical configuration defining a first pattern, and the first pattern has first pattern struts and connectors arranged in a predetermined configuration. The stent also comprises a branch portion comprised of a second pattern, wherein the branch portion is at least partially detachable from the stent body.
    Type: Application
    Filed: June 6, 2005
    Publication date: February 16, 2006
    Applicant: Advanced Stent Technologies, Inc.
    Inventors: Amnon Yadin, Hans Valencia
  • Publication number: 20050283231
    Abstract: The present invention provides methods and apparatus for endovascularly replacing a patient's heart valve. The apparatus includes a replacement valve and an expandable anchor configured for endovascular delivery to a vicinity of the patient's heart valve. In some embodiments, the replacement valve is adapted to wrap about the anchor, for example, by everting during endovascular deployment. In some embodiments, the replacement valve is not connected to expandable portions of the anchor. In some embodiments, the anchor is configured for active foreshortening during endovascular deployment. In some embodiments, the anchor includes expandable lip and skirt regions for engaging the patient's heart valve during deployment. In some embodiments, the anchor comprises a braid fabricated from a single strand of wire. In some embodiments, the apparatus includes a lock configured to maintain anchor expansion. The invention also includes methods for endovascularly replacing a patient's heart valve.
    Type: Application
    Filed: June 16, 2004
    Publication date: December 22, 2005
    Inventors: Ulrich Haug, Hans Valencia, Robert Geshlider, Tom Saul, Amr Salahieh, Dwight Morejohn, Kenneth Michlitsch
  • Publication number: 20050143809
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Application
    Filed: November 5, 2004
    Publication date: June 30, 2005
    Applicant: Sadra Medical a Delaware Corporation
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans Valencia, Daniel Hildebrant, Brian Brandt, Dwight Morejohn, Claudio Argento, Tom Saul, Ulrich Haug
  • Publication number: 20050137690
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a delivery catheter having a diameter of 21 french or less; an expandable anchor disposed within the delivery catheter; and a replacement valve disposed within the delivery catheter. The invention also includes a method for endovascularly replacing a heart valve of a patient. In some embodiments the method includes the steps of: inserting a catheter having a diameter no more than 21 french into the patient; endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve through the catheter; and deploying the anchor and the replacement valve.
    Type: Application
    Filed: December 23, 2003
    Publication date: June 23, 2005
    Applicant: Sadra Medical
    Inventors: Amr Salahieh, Brian Brandt, Dwight Morejohn, Ulrich Haug, Jean-Pierre Dueri, Hans Valencia, Robert Geshlider, Jeff Krolik
  • Publication number: 20050137688
    Abstract: A method for percutaneously replacing a heart valve of a patient. In some embodiments the method includes the steps of percutaneously delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; expanding the anchor to a deployed configuration in which the anchor contacts tissue at a first anchor site; repositioning the anchor to a second anchor site; and deploying the anchor at the second anchor site.
    Type: Application
    Filed: December 23, 2003
    Publication date: June 23, 2005
    Applicant: Sadra Medical, a Delaware Corporation
    Inventors: Amr Salahieh, Brian Brandt, Dwight Morejohn, Ulrich Haug, Jean-Pierre Dueri, Hans Valencia, Robert Geshlider, Jeff Krolik
  • Publication number: 20050137687
    Abstract: Apparatus for endovascularly replacing a patient's heart valve. In some embodiments the apparatus includes an expandable anchor with a lip region and a skirt region; and a replacement valve, wherein the lip region and skirt region are configured for percutaneous expansion to engage leaflets of the heart valve. The invention is also a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of endovascularly delivering apparatus including an anchor having lip and skirt regions, and a replacement valve coupled to the anchor, to a vicinity of the heart valve in a collapsed delivery configuration; and expanding the apparatus such that leaflets of the heart valve are captured between the lip and skirt regions of the anchor.
    Type: Application
    Filed: December 23, 2003
    Publication date: June 23, 2005
    Applicant: Sadra Medical
    Inventors: Amr Salahieh, Brian Brandt, Dwight Morejohn, Ulrich Haug, Jean-Pierre Dueri, Hans Valencia, Robert Geshlider, Jeff Krolik
  • Publication number: 20050137699
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor in an unexpanded configuration within a sheath to a vicinity of the heart valve; deploying the anchor from the sheath; expanding the anchor with a deployment tool comprising a plurality of actuation elements to contact tissue at an anchor site; and retrieving the anchor into the sheath.
    Type: Application
    Filed: November 5, 2004
    Publication date: June 23, 2005
    Applicant: Sadra Medical, a Delaware Corporation
    Inventors: Amr Salahieh, Hans Valencia, Brian Brandt, Claudio Argento, Ulrich Haug, Jean-Pierre Dueri, Daniel Hildebrand, Dwight Morejohn, Tom Saul
  • Publication number: 20050137686
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulic or non-pneumatic actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor.
    Type: Application
    Filed: December 23, 2003
    Publication date: June 23, 2005
    Applicant: Sadra Medical, a Delaware Corporation
    Inventors: Amr Salahieh, Brian Brandt, Dwight Morejohn, Ulrich Haug, Jean-Pierre Dueri, Hans Valencia, Robert Geshlider, Jeff Krolik
  • Publication number: 20050137689
    Abstract: A method for endovascularly replacing a heart valve of a patient. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor in an unexpanded configuration within a catheter to a vicinity of the heart valve; deploying the anchor from the catheter; expanding the anchor to contact tissue at an anchor site; and retrieving the anchor into the catheter. The invention also includes an apparatus for endovascularly replacing a heart valve, including: a catheter; a replacement valve configured to be disposed within the catheter for delivery to a vicinity of the heart valve; and an expandable anchor configured to be disposed within the catheter for delivery to a vicinity of the heart valve, to be deployed from the catheter, to be expanded to contact tissue at an anchor site and to be retrieved back into the catheter after having been expanded.
    Type: Application
    Filed: December 23, 2003
    Publication date: June 23, 2005
    Applicant: Sadra Medical, a Delware Corporation
    Inventors: Amr Salahieh, Brian Brandt, Dwight Morejohn, Ulrich Haug, Jean-Pierre Dueri, Hans Valencia, Robert Geshlider, Jeff Krolik
  • Publication number: 20050137701
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 23, 2003
    Publication date: June 23, 2005
    Applicant: Sadra Medical
    Inventors: Amr Salahieh, Brian Brandt, Dwight Morejohn, Ulrich Haug, Jean-Pierre Dueri, Hans Valencia, Robert Geshlider
  • Publication number: 20050137693
    Abstract: The present invention relates to methods for endovascularly replacing a patient's heart valve. In some embodiments, the method includes the steps of endovascularly delivering a replacement valve and an anchor to a vicinity of the heart valve, the anchor having a braid, and expanding the braid to a deployed configuration against the patient's tissue. The braid may be fabricated from a single strand of wire and/or may comprise at least one turn feature.
    Type: Application
    Filed: July 15, 2004
    Publication date: June 23, 2005
    Inventors: Ulrich Haug, Hans Valencia, Robert Geshlider, Tom Saul, Amr Salahieh, Dwight Morejohn
  • Publication number: 20050137702
    Abstract: The present invention relates to an apparatus for replacing a native aortic valve, the apparatus includes an expandable anchor adapted to be endovascularly delivered and secured at a site within the native aortic valve. The expandable anchor has a delivery length in a delivery configuration substantially greater than a deployed length in a deployed configuration. The apparatus may also include and a replacement valve configured to be secured within the anchor.
    Type: Application
    Filed: July 15, 2004
    Publication date: June 23, 2005
    Inventors: Ulrich Haug, Hans Valencia, Robert Geshlider, Tom Saul, Amr Salahieh, Dwight Morejohn
  • Publication number: 20050137692
    Abstract: The present invention provides methods and apparatus for endovascularly replacing a patient's heart valve. The apparatus includes a replacement valve and an anchor having an expandable braid. In some embodiments, the expandable braid is fabricated from a single strand of wire. In some embodiments, the expandable braid comprises at least one turn feature. The anchor and the valve preferably are configured for endovascular delivery and deployment.
    Type: Application
    Filed: July 15, 2004
    Publication date: June 23, 2005
    Inventors: Ulrich Haug, Hans Valencia, Robert Geshlider, Tom Saul, Amr Salahieh, Dwight Morejohn
  • Publication number: 20050137694
    Abstract: The present invention provides methods and apparatus for endovascularly replacing a patient's heart valve. The apparatus includes a replacement valve and an anchor having an expandable braid. In some embodiments, the expandable braid is fabricated from a single strand of wire. In some embodiments, the expandable braid comprises at least one turn feature. The anchor and the valve preferably are configured for endovascular delivery and deployment.
    Type: Application
    Filed: July 15, 2004
    Publication date: June 23, 2005
    Inventors: Ulrich Haug, Hans Valencia, Robert Geshlider, Tom Saul, Amr Salahieh, Dwight Morejohn
  • Publication number: 20050137695
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: August 3, 2004
    Publication date: June 23, 2005
    Applicant: Sadra Medical
    Inventors: Amr Salahieh, Brian Brandt, Dwight Morejohn, Ulrich Haug, Jean-Pierre Dueri, Hans Valencia, Robert Geshlider