Patents by Inventor Hans Van Meer

Hans Van Meer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11430898
    Abstract: Methods and apparatus for forming a thin film transistor (TFT) having a metal oxide layer. The method may include forming an amorphous metal oxide layer and treating the metal oxide layer with a silicon containing gas or plasma including Si4+ ions. The silicon treatment of the metal oxide layer helps fill the oxygen vacancies in the metal oxide channel layer, leading to a more stable TFT and preventing a negative threshold voltage in the TFT.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: August 30, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jose-Ignacio Del-Agua-Borniquel, Hendrik F. W. Dekkers, Hans Van Meer, Jae Young Lee
  • Publication number: 20210288186
    Abstract: Methods and apparatus for forming a thin film transistor (TFT) having a metal oxide layer. The method may include forming an amorphous metal oxide layer and treating the metal oxide layer with a silicon containing gas or plasma including Si4+ ions. The silicon treatment of the metal oxide layer helps fill the oxygen vacancies in the metal oxide channel layer, leading to a more stable TFT and preventing a negative threshold voltage in the TFT.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 16, 2021
    Inventors: Jose-Ignacio Del-Agua-Borniquel, Hendrik F.W. Dekkers, Hans Van Meer, Jae Young Lee
  • Patent number: 8809178
    Abstract: One illustrative method disclosed herein includes forming a plurality of spaced-apart trenches in a semiconducting substrate to thereby define a fin structure for the device, forming a local isolation region within each of the trenches, forming a sacrificial gate structure on the fin structure, wherein the sacrificial gate structure comprises at least a sacrificial gate electrode, and forming a layer of insulating material above the fin structure and within the trench above the local isolation region. In this example, the method further includes performing at least one etching process to remove the sacrificial gate structure to thereby define a gate cavity, after removing the sacrificial gate structure, performing at least one etching process to form a recess in the local isolation region, and forming a replacement gate structure that is positioned in the recess in the local isolation region and in the gate cavity.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: August 19, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Yanxiang Liu, Michael Hargrove, Xiaodong Yang, Hans van Meer, Laegu Kang, Christian Gruensfelder, Srikanth Samavedam
  • Publication number: 20130270680
    Abstract: A method for forming different active thicknesses on the same silicon layer includes masking the silicon layer and exposing selected regions of the silicon layer. The thickness of the silicon layer at the exposed regions is changed, either by adding silicon or subtracting silicon from the layer at the exposed regions. Once the mask is removed, the silicon layer has regions of different active thicknesses, respectively suitable for use in different types of devices, such as diodes and transistors.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 17, 2013
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Publication number: 20130224945
    Abstract: One illustrative method disclosed herein includes forming a plurality of spaced-apart trenches in a semiconducting substrate to thereby define a fin structure for the device, forming a local isolation region within each of the trenches, forming a sacrificial gate structure on the fin structure, wherein the sacrificial gate structure comprises at least a sacrificial gate electrode, and forming a layer of insulating material above the fin structure and within the trench above the local isolation region. In this example, the method further includes performing at least one etching process to remove the sacrificial gate structure to thereby define a gate cavity, after removing the sacrificial gate structure, performing at least one etching process to form a recess in the local isolation region, and forming a replacement gate structure that is positioned in the recess in the local isolation region and in the gate cavity.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Yanxiang Liu, Michael Hargrove, Xiaodong Yang, Hans Van Meer, Laegu Kang, Christian Gruensfelder, Srikanth Samavedam
  • Patent number: 8497556
    Abstract: A semiconductor product has different active thicknesses of silicon on a single semiconductor substrate. The thickness of the silicon layer is changed either by selectively adding silicon or subtracting silicon from an original layer of silicon. The different active thicknesses are suitable for use in different types of devices, such as diodes and transistors.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 30, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Publication number: 20120326279
    Abstract: A semiconductor product has different active thicknesses of silicon on a single semiconductor substrate. The thickness of the silicon layer is changed either by selectively adding silicon or subtracting silicon from an original layer of silicon. The different active thicknesses are suitable for use in different types of devices, such as diodes and transistors.
    Type: Application
    Filed: September 7, 2012
    Publication date: December 27, 2012
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Patent number: 8263453
    Abstract: A method far farming different active thicknesses on the same silicon layer includes masking the silicon layer and exposing selected regions of the silicon layer. The thickness of the silicon layer at the exposed regions is changed, either by adding silicon or subtracting silicon from the layer at the exposed regions. Once the mask is removed, the silicon layer has regions of different active thicknesses, respectively suitable for use in different types of devices, such as diodes and transistors.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: September 11, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Publication number: 20110272791
    Abstract: A method far farming different active thicknesses on the same silicon layer includes masking the silicon layer and exposing selected regions of the silicon layer. The thickness of the silicon layer at the exposed regions is changed, either by adding silicon or subtracting silicon from the layer at the exposed regions. Once the mask is removed, the silicon layer has regions of different active thicknesses, respectively suitable for use in different types of devices, such as diodes and transistors.
    Type: Application
    Filed: July 15, 2011
    Publication date: November 10, 2011
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Patent number: 8003459
    Abstract: A method for forming different active thicknesses on the same silicon layer includes masking the silicon layer and exposing selected regions of the silicon layer. The thickness of the silicon layer at the exposed regions is changed, either by adding silicon or subtracting silicon from the layer at the exposed regions. Once the mask is removed, the silicon layer has regions of different active thicknesses, respectively suitable for use in different types of devices, such as diodes and transistors.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: August 23, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Publication number: 20100151660
    Abstract: A method for forming different active thicknesses on the same silicon layer includes masking the silicon layer and exposing selected regions of the silicon layer. The thickness of the silicon layer at the exposed regions is changed, either by adding silicon or subtracting silicon from the layer at the exposed regions. Once the mask is removed, the silicon layer has regions of different active thicknesses, respectively suitable for use in different types of devices, such as diodes and transistors.
    Type: Application
    Filed: January 21, 2010
    Publication date: June 17, 2010
    Applicant: Advanced Micro Devices, Inc.
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Patent number: 7666735
    Abstract: A method for forming different active thicknesses on the same silicon layer includes masking the silicon layer and exposing selected regions of the silicon layer. The thickness of the silicon layer at the exposed regions is changed, either by adding silicon or subtracting silicon from the layer at the exposed regions. Once the mask is removed, the silicon layer has regions of different active thicknesses, respectively suitable for use in different types of devices, such as diodes and transistors.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: February 23, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Patent number: 7279389
    Abstract: By providing a hard mask layer stack including at least three different layers for patterning a gate electrode structure, constraints demanded by sophisticated lithography, as well as cap layer integrity, in a subsequent selective epitaxial growth process may be accomplished, thereby providing the potential for further device scaling of transistor devices requiring raised drain and source regions.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: October 9, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karla Romero, Thorsten Kammler, Scott Luning, Hans Van Meer
  • Publication number: 20060223250
    Abstract: By providing a hard mask layer stack including at least three different layers for patterning a gate electrode structure, constraints demanded by sophisticated lithography, as well as cap layer integrity, in a subsequent selective epitaxial growth process may be accomplished, thereby providing the potential for further device scaling of transistor devices requiring raised drain and source regions.
    Type: Application
    Filed: November 16, 2005
    Publication date: October 5, 2006
    Inventors: Karla Romero, Thorsten Kammler, Scott Luning, Hans Van Meer
  • Patent number: 7105399
    Abstract: Gate electrodes with selectively tuned channel thicknesses are formed by selective epitaxial growth. Embodiments include forming shallow trench isolation regions in an SOI substrate, selectively removing the nitride stop layer and pad oxide layer in an exposed particular active region, and implementing selective epitaxial growth to increase the thickness of the semiconductor layer in the particular active region. Subsequently, the remaining nitride stop and pad oxide layers in other active regions are removed, gate dielectric layers formed, as by thermal oxidation, and the transistors completed.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: September 12, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Srikanteswara Dakshina-Murthy, Douglas Bonser, Hans Van Meer, David Brown