Patents by Inventor Hans Von Känel

Hans Von Känel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11367747
    Abstract: Monolithic pixel detectors, systems and methods for the detection and imaging of electromagnetic radiation with high spectral and spatial resolution comprise a Si wafer with a CMOS processed pixel readout bonded to an absorber wafer in wafer bonds comprising conducting bonds between doped, highly conducting charge collectors in the readout and highly conducting regions in the absorber wafer and poorly conducting bonds between regions of high resistivity.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: June 21, 2022
    Inventor: Hans Von Känel
  • Publication number: 20210225803
    Abstract: Production system for wafer bonding comprising modules for wet chemical wafer cleaning and surface passivation and vacuum modules with base pressure in the ultrahigh vacuum regime for the removal of surface passivation, wafer flipping and alignment, low temperature annealing and wafer bonding, with all modules integrated in the same tool and individually serviceable. Methods for oxide-free covalent semiconductor wafer bonding include wet chemistry and vacuum processing at low temperatures compatible with CMOS processed wafers.
    Type: Application
    Filed: June 24, 2019
    Publication date: July 22, 2021
    Applicant: G-ray Industries SA
    Inventors: Hans VON KÄNEL, Franco BRESSAN
  • Patent number: 11024666
    Abstract: Monolithic CMOS integrated pixel detector (10, 20, 30, 260, 470, 570), and systems and methods are provided for the detection and imaging of electromagnetic radiation with high spectral and spatial resolution. Such detectors comprise a Si wafer with a CMOS processed readout bonded to an absorber wafer in an electrically conducting covalent wafer bond. The pixel detectors, systems and methods are used in various medical and non-medical types of applications.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: June 1, 2021
    Assignee: G-ray Switzerland SA
    Inventor: Hans Von Känel
  • Patent number: 10985204
    Abstract: Oxide-free, low temperature wafer bonding permits electric current to cross the covalently bonded interface unimpeded by traps, recombination centers and unintentional, defect-induced blocking barriers when interfacial defects are passivated by hydrogen diffused from shallow implants towards the interface. Systems and methods comprising oxide-free, low temperature covalent wafer bonding with passivated interface states are used in various applications requiring reduced interfacial scattering and carrier trapping and efficient charge collection across bonded interfaces.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: April 20, 2021
    Assignee: G-ray Switzerland SA
    Inventor: Hans Von Känel
  • Patent number: 10636834
    Abstract: CBCT including monolithic photon counting FPD for medical applications requiring real-time 3D imaging, like mammography, interventional guided procedures or external beam radiotherapy, includes CMOS processed readout electronics monolithically integrated with a single crystalline X-ray absorber by covalent wafer bonding near room temperature and adapted for single photon counting providing high energy, temporal and spatial resolution.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: April 28, 2020
    Assignee: G-ray Switzerland SA
    Inventors: Claude Meylan, Hans Von Känel
  • Patent number: 10561382
    Abstract: CBCT including monolithic photon counting FPD for medical applications requiring real-time 3D imaging, like mammography, interventional guided procedures or external beam radiotherapy, includes CMOS processed readout electronics monolithically integrated with a single crystalline X-ray absorber by covalent wafer bonding near room temperature and adapted for single photon counting providing high energy, temporal and spatial resolution.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: February 18, 2020
    Assignee: G-ray Switzerland SA
    Inventors: Claude Meylan, Hans Von Känel
  • Patent number: 10535707
    Abstract: Monolithic silicon pixel detectors, systems and methods for the detection and imaging of radiation in the form of charged particles or X-ray photons comprise a Si wafer with a CMOS processed readout communicating via implants for charge collection with an absorber forming a monolithic unit with the Si wafer to collect and process the electrical signals generated by radiation incident on the absorber. In particular, a monolithic CMOS integrated pixel detector includes several components. Such components include a p-doped silicon wafer with a resistivity of at least 1 k?cm (220, 310, 310?) having a front-side (224, 314, 314) comprising a CMOS processed readout electronics (250, 350) comprising pixel electronics (258, 358) and a backside (228, 318) opposite the front side. In addition, the pixel detector includes charge collectors (252, 352) communicating with the pixel electronics (258, 358) and defining the pixel size. Still further, high voltage contacts (282, 382) are provided.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: January 14, 2020
    Assignee: G-ray Industries SA
    Inventor: Hans Von Känel
  • Publication number: 20190371853
    Abstract: Monolithic pixel detectors, systems and methods for the detection and imaging of electromagnetic radiation with high spectral and spatial resolution comprise a Si wafer with a CMOS processed pixel readout bonded to an absorber wafer in wafer bonds comprising conducting bonds between doped, highly conducting charge collectors in the readout and highly conducting regions in the absorber wafer and poorly conducting bonds between regions of high resistivity.
    Type: Application
    Filed: March 1, 2018
    Publication date: December 5, 2019
    Inventor: Hans VON KÄNEL
  • Publication number: 20190288026
    Abstract: Monolithic pixel detectors, systems and methods for the detection and imaging of electromagnetic radiation with high spectral and spatial resolution comprise a Si wafer with a CMOS processed pixel readout bonded to an absorber wafer in wafer bonds comprising conducting bonds between doped, highly conducting charge collectors in the readout and highly conducting regions in the absorber wafer and poorly conducting bonds between regions of high resistivity.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Inventor: Hans VON KAENEL
  • Publication number: 20190280042
    Abstract: Monolithic silicon pixel detectors, systems and methods for the detection and imaging of radiation in the form of charged particles or X-ray photons comprise a Si wafer with a CMOS processed readout communicating via implants for charge collection with an absorber forming a monolithic unit with the Si wafer to collect and process the electrical signals generated by radiation incident on the absorber. In particular, a monolithic CMOS integrated pixel detector includes several components. Such components include a p-doped silicon wafer with a resistivity of at least 1 k?cm (220, 310, 310?) having a front-side (224, 314, 314) comprising a CMOS processed readout electronics (250, 350) comprising pixel electronics (258, 358) and a backside (228, 318) opposite the front side. In addition, the pixel detector includes charge collectors (252, 352) communicating with the pixel electronics (258, 358) and defining the pixel size. Still further, high voltage contacts (282, 382) are provided.
    Type: Application
    Filed: May 11, 2017
    Publication date: September 12, 2019
    Applicant: G-ray Industries SA
    Inventor: Hans VON KÄNEL
  • Publication number: 20190172860
    Abstract: Monolithic CMOS integrated pixel detector (10, 20, 30, 260, 470, 570), and systems and methods are provided for the detection and imaging of electromagnetic radiation with high spectral and spatial resolution. Such detectors comprise a Si wafer with a CMOS processed readout bonded to an absorber wafer in an electrically conducting covalent wafer bond. The pixel detectors, systems and methods are used in various medical and non-medical types of applications.
    Type: Application
    Filed: August 29, 2017
    Publication date: June 6, 2019
    Inventor: Hans VON KÄNEL
  • Publication number: 20190043914
    Abstract: Oxide-free, low temperature wafer bonding permits electric current to cross the covalently bonded interface unimpeded by traps, recombination centers and unintentional, defect-induced blocking barriers when interfacial defects are passivated by hydrogen diffused from shallow implants towards the interface.
    Type: Application
    Filed: February 16, 2017
    Publication date: February 7, 2019
    Inventor: Hans VON KÄNEL
  • Patent number: 10163957
    Abstract: Monolithic pixel detectors, systems and methods for the detection and imaging of radiation in the form of energetic particles which may have a mass or be massless (such as X-ray photons) comprise a Si wafer with a CMOS processed readout communicating via implants for charge collection with an absorber forming a monolithic unit with the Si wafer to collect and process the electrical signals generated by radiation incident on the absorber. The pixel detectors, systems and methods are used in various medical, industrial and scientific types of applications.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: December 25, 2018
    Assignee: G-ray Switzerland SA
    Inventor: Hans Von Känel
  • Publication number: 20180240842
    Abstract: CBCT including monolithic photon counting FPD for medical applications requiring real-time 3D imaging, like mammography, interventional guided procedures or external beam radiotherapy, includes CMOS processed readout electronics monolithically integrated with a single crystalline X-ray absorber by covalent wafer bonding near room temperature and adapted for single photon counting providing high energy, temporal and spatial resolution.
    Type: Application
    Filed: August 31, 2016
    Publication date: August 23, 2018
    Applicant: G-ray Switzerland SA
    Inventors: Claude MEYLAN, Hans VON KÄNEL
  • Publication number: 20170373110
    Abstract: Monolithic pixel detectors, systems and methods for the detection and imaging of radiation in the form of energetic particles which may have a mass or be massless (such as X-ray photons) comprise a Si wafer with a CMOS processed readout communicating via implants for charge collection with an absorber forming a monolithic unit with the Si wafer to collect and process the electrical signals generated by radiation incident on the absorber. The pixel detectors, systems and methods are used in various medical, industrial and scientific types of applications.
    Type: Application
    Filed: December 21, 2015
    Publication date: December 28, 2017
    Applicant: G-ray Switzerland SA
    Inventor: Hans VON KÄNEL
  • Publication number: 20170055923
    Abstract: CBCT including monolithic photon counting FPD for medical applications requiring real-time 3D imaging, like mammography, interventional guided procedures or external beam radiotherapy, includes CMOS processed readout electronics monolithically integrated with a single crystalline X-ray absorber by covalent wafer bonding near room temperature and adapted for single photon counting providing high energy, temporal and spatial resolution.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 2, 2017
    Inventors: Claude MEYLAN, Hans Von Känel
  • Patent number: 9466479
    Abstract: A process for epitaxial deposition of compound semiconductor layers includes several steps. In a first step, a substrate is removably attached to a substrate holder that may be heated. In a second step, the substrate is heated to a temperature suitable for epitaxial deposition. In a third step, substances are vaporized into vapor particles, such substances including at least one of a list of substances, comprising elemental metals, metal alloys and dopants. In a fourth step, the vapor particles are discharged to the deposition chamber. In a fifth step, a pressure is maintained in the range of 10^?3 to 1 mbar in the deposition chamber by supplying a mixture of gases comprising at least one gas, wherein vapor particles and gas particles propagate diffusively. In a sixth optional step, a magnetic field may be applied to the deposition chamber. In a seventh step, the vapor particles and gas particles are activated by a plasma in direct contact with the sample holder.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 11, 2016
    Assignee: OERLIKON METCO AG, WOHLEN
    Inventor: Hans Von Känel
  • Patent number: 8882909
    Abstract: Relaxed germanium buffer layers can be grown economically on misoriented silicon wafers by low-energy plasma-enhanced chemical vapor deposition. In conjunction with thermal annealing and/or patterning, the buffer layers can serve as high-quality virtual substrates for the growth of crack-free GaAs layers suitable for high-efficiency solar cells, lasers and field effect transistors.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: November 11, 2014
    Assignee: Dichroic Cell S.R.L.
    Inventor: Hans Von Kaenel
  • Patent number: 8647434
    Abstract: An apparatus and process for fast epitaxial deposition of compound semiconductor layers includes a low-energy, high-density plasma generating apparatus for plasma enhanced vapor phase epitaxy. The process provides in one step, combining one or more metal vapors with gases of non-metallic elements in a deposition chamber. Then highly activating the gases in the presence of a dense, low-energy plasma. Concurrently reacting the metal vapor with the highly activated gases and depositing the reaction product on a heated substrate in communication with a support immersed in the plasma, to form a semiconductor layer on the substrate. The process is carbon-free and especially suited for epitaxial growth of nitride semiconductors at growth rates up to 10 nm/s and substrate temperatures below 1000° C. on large-area silicon substrates. The process requires neither carbon-containing gases nor gases releasing hydrogen, and in the absence of toxic carrier or reagent gases, is environment friendly.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: February 11, 2014
    Assignee: Sulzer Metco AG
    Inventor: Hans Von Kaenel
  • Publication number: 20130260537
    Abstract: A process for epitaxial deposition of compound semiconductor layers includes several steps. In a first step, a substrate is removably attached to a substrate holder that may be heated. In a second step, the substrate is heated to a temperature suitable for epitaxial deposition. In a third step, substances are vaporized into vapor particles, such substances including at least one of a list of substances, comprising elemental metals, metal alloys and dopants. In a fourth step, the vapor particles are discharged to the deposition chamber. In a fifth step, a pressure is maintained in the range of 10?-3 to 1 mbar in the deposition chamber by supplying a mixture of gases comprising at least one gas, wherein vapor particles and gas particles propagate diffusively. In a sixth optional step, a magnetic field may be applied to the deposition chamber. In a seventh step, the vapor particles and gas particles are activated by a plasma in direct contact with the sample holder.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 3, 2013
    Applicant: Sulzer Metco AG
    Inventor: Hans VON KÄNEL