Patents by Inventor Hans-Wilm Heinrich

Hans-Wilm Heinrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8394169
    Abstract: A sintered cemented carbide body (e.g., a cutting tool) and a method of making the same. The sintered cemented carbide body includes tungsten carbide, a binder phase of at least one metal of the iron group or an alloy thereof, and one or more solid solution phases. Each one of the solid solution phases has at least one of the carbides and carbonitrides of a combination of zirconium, niobium, and tungsten. The method includes the steps of providing a powder mixture that contains tungsten carbide, a binder metal powder comprising at least one metal of the iron group or an alloy thereof, and at least one of the carbides and carbonitrides of both zirconium and niobium including a powder of the carbides or carbonitrides of zirconium and niobium, forming a green compact of said powder mixture, and vacuum sintering or sinter-HIP said green compact at a temperature of from 1400 to 1560° C.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: March 12, 2013
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt
  • Patent number: 7431747
    Abstract: The invention relates to a cutting tool made of ceramics, cermet or cemented carbide and including a rake face, a flank face and a cutting edge at the intersection of rake face and flank face, as well as a multi-layered wear resisting coating including a layer which is made of aluminum oxide and deposited on a hard material layer, in which for avoiding an increase in the width of wear mark, with simultaneous retention of the resistance to cratering of the rake face, the aluminum oxide layer of the coating is removed on the flank face and the underlying hard material layer is exposed at least in portions. The aluminum oxide layer of the coating is removed on the flank face preferably by means of laser beam treatment.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: October 7, 2008
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Günter Roder, Günther Häupl
  • Patent number: 7309466
    Abstract: A sintered cemented carbide body (e.g., a cutting tool) and a method of making the same. The sintered cemented carbide body includes tungsten carbide, a binder phase of at least one metal of the iron group or an alloy thereof, and one or more solid solution phases. Each one of the solid solution phases has at least one of the carbides and carbonitrides of a combination of zirconium, niobium, and tungsten. The method includes the steps of providing a powder mixture that contains tungsten carbide, a binder metal powder comprising at least one metal of the iron group or an alloy thereof, and at least one of the carbides and carbonitrides of both zirconium and niobium including a powder of the carbides or carbonitrides of zirconium and niobium, forming a green compact of said powder mixture, and vacuum sintering or sinter-HIP said green compact at a temperature of from 1400 to 1560° C.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: December 18, 2007
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt
  • Patent number: 7179319
    Abstract: The invention proposes a fine grained sintered cemented carbide containing chromium and based on WC and a binder based on Co or CoNiFe, and having at least one additional phase comprising at least one carbide or mixed carbide of tantalum. For improving the high-temperature properties while simultaneously maintaining a good trade-off between hardness and bending strength, it is proposed that the sintered cemented carbide contains approximately 0.3 to 4% Ta, as related to the total mass of the sintered cemented carbide, that the WC has a grain size of between 0.1 and 1.3 ?m, that the binder phase contains the metals W, Cr and Ta, dissolved in solid solution, and that the at least one additional phase comprises a TaC phase visible by optical microscopy. The invention further relates to a powder-metallurgical process for manufacturing the sintered cemented carbide and to the use of the sintered cemented carbide for manufacturing cutting tools having improved high-temperature properties.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: February 20, 2007
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Dieter Schmidt, Manfred Wolf
  • Patent number: 7163657
    Abstract: A sintered cemented carbide body (e.g., a cutting tool) and a method of making the same. The sintered cemented carbide body includes tungsten carbide, a binder phase of at least one metal of the iron group or an alloy thereof, and one or more solid solution phases. Each one of the solid solution phases has at least one of the carbides and carbonitrides of a combination of zirconium, niobium, and tungsten. The method includes the steps of providing a powder mixture that contains tungsten carbide, a binder metal powder comprising at least one metal of the iron group or an alloy thereof, and at least one of the carbides and carbonitrides of both zirconium and niobium including a powder of the carbides or carbonitrides of zirconium and niobium, forming a green compact of said powder mixture, and vacuum sintering or sinter-HIP said green compact at a temperature of from 1400 to 1560° C.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: January 16, 2007
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt
  • Publication number: 20060194078
    Abstract: The invention relates to a cutting tool made of ceramics, cermet or cemented carbide and including a rake face, a flank face and a cutting edge at the intersection of rake face and flank face, as well as a multi-layered wear resisting coating including a layer which is made of aluminum oxide and deposited on a hard material layer, in which for avoiding an increase in the width of wear mark, with simultaneous retention of the resistance to cratering of the rake face, the aluminum oxide layer of the coating is removed on the flank face and the underlying hard material layer is exposed at least in portions. The aluminum oxide layer of the coating is removed on the flank face preferably by means of laser beam treatment.
    Type: Application
    Filed: January 12, 2006
    Publication date: August 31, 2006
    Inventors: Hans-Wilm Heinrich, Gunter Roder, Gunther Haupl
  • Publication number: 20060171837
    Abstract: A sintered cemented carbide body (e.g., a cutting tool) and a method of making the same. The sintered cemented carbide body includes tungsten carbide, a binder phase of at least one metal of the iron group or an alloy thereof, and one or more solid solution phases. Each one of the solid solution phases has at least one of the carbides and carbonitrides of a combination of zirconium, niobium, and tungsten. The method includes the steps of providing a powder mixture that contains tungsten carbide, a binder metal powder comprising at least one metal of the iron group or an alloy thereof, and at least one of the carbides and carbonitrides of both zirconium and niobium including a powder of the carbides or carbonitrides of zirconium and niobium, forming a green compact of said powder mixture, and vacuum sintering or sinter-HIP said green compact at a temperature of from 1400 to 1560° C.
    Type: Application
    Filed: March 31, 2006
    Publication date: August 3, 2006
    Applicant: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt
  • Publication number: 20060169102
    Abstract: A sintered cemented carbide body (e.g., a cutting tool) and a method of making the same. The sintered cemented carbide body includes tungsten carbide, a binder phase of at least one metal of the iron group or an alloy thereof, and one or more solid solution phases. Each one of the solid solution phases has at least one of the carbides and carbonitrides of a combination of zirconium, niobium, and tungsten. The method includes the steps of providing a powder mixture that contains tungsten carbide, a binder metal powder comprising at least one metal of the iron group or an alloy thereof, and at least one of the carbides and carbonitrides of both zirconium and niobium including a powder of the carbides or carbonitrides of zirconium and niobium, forming a green compact of said powder mixture, and vacuum sintering or sinter-HIP said green compact at a temperature of from 1400 to 1560° C.
    Type: Application
    Filed: March 31, 2006
    Publication date: August 3, 2006
    Applicant: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt
  • Publication number: 20050120825
    Abstract: A sintered cemented carbide body (e.g., a cutting tool) and a method of making the same. The sintered cemented carbide body includes tungsten carbide, a binder phase of at least one metal of the iron group or an alloy thereof, and one or more solid solution phases. Each one of the solid solution phases has at least one of the carbides and carbonitrides of a combination of zirconium, niobium, and tungsten. The method includes the steps of providing a powder mixture that contains tungsten carbide, a binder metal powder comprising at least one metal of the iron group or an alloy thereof, and at least one of the carbides and carbonitrides of both zirconium and niobium including a powder of the carbides or carbonitrides of zirconium and niobium, forming a green compact of said powder mixture, and vacuum sintering or sinter-HIP said green compact at a temperature of from 1400 to 1560° C.
    Type: Application
    Filed: December 3, 2003
    Publication date: June 9, 2005
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt
  • Publication number: 20040187638
    Abstract: The invention proposes a fine grained sintered cemented carbide containing chromium and based on WC and a binder based on Co or CoNiFe, and having at least one additional phase comprising at least one carbide or mixed carbide of tantalum. For improving the high-temperature properties while simultaneously maintaining a good trade-off between hardness and bending strength, it is proposed that the sintered cemented carbide contains approximately 0.3 to 4% Ta, as related to the total mass of the sintered cemented carbide, that the WC has a grain size of between 0.1 and 1.3 &mgr;m, that the binder phase contains the metals W, Cr and Ta, dissolved in solid solution, and that the at least one additional phase comprises a TaC phase visible by optical microscopy. The invention further relates to a powder-metallurgical process for manufacturing the sintered cemented carbide and to the use of the sintered cemented carbide for manufacturing cutting tools having improved high-temperature properties.
    Type: Application
    Filed: January 16, 2004
    Publication date: September 30, 2004
    Inventors: Hans-Wilm Heinrich, Dieter Schmidt, Manfred Wolf
  • Patent number: 6655882
    Abstract: There is now provided a twist drill having an elongate body at a first end, a shank at a second and opposite end, the elongate body and the shank sharing a common axis, at least one face on the elongate body at an end opposite the shank, wherein the at least one face defines a corresponding flute extending along the elongate body toward the shank, at least one flank on an end of the elongate body at an end opposite the shank, and a cutting edge at a juncture of the at least one face and the at least one flank, and the like tools, having a sintered cemented carbide body, and the use thereof in material removing and dislodging tools.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: December 2, 2003
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt
  • Publication number: 20020029910
    Abstract: There is now provided a twist drill having an elongate body at a first end, a shank at a second and opposite end, the elongate body and the shank sharing a common axis, at least one face on the elongate body at an end opposite the shank, wherein the at least one face defines a corresponding flute extending along the elongate body toward the shank, at least one flank on an end of the elongate body at an end opposite the shank, and a cutting edge at a juncture of the at least one face and the at least one flank, and the like tools, having a sintered cemented carbide body, and the use thereof in material removing and dislodging tools.
    Type: Application
    Filed: August 22, 2001
    Publication date: March 14, 2002
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt
  • Patent number: 6170917
    Abstract: A pick-style tool that includes an elongate tool body with an axially forward end and an axially rearward end, and a hard insert affixed to the tool body at the axially forward end is disclosed. The hard insert comprises a WC-cermet comprising tungsten carbide and about 5 wt. % to 27 wt. % Co—Ni—Fe-binder. The Co—Ni—Fe-binder is unique in that even when subjected to plastic deformation, the binder substantially maintains its face centered cubic (fcc) crystal structure and avoids stress and/or strain induced transformations.
    Type: Grant
    Filed: August 27, 1997
    Date of Patent: January 9, 2001
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt, Uwe Schleinkofer
  • Patent number: 6024776
    Abstract: Cermets having a Co--Ni--Fe-binder are described. The Co--Ni--Fe-binder is unique in that even when subjected to plastic deformation, the binder substantially maintains its face centered cubic crystal structure and avoids stress and/or strain induced phase transformations. Stated differently, the Co--Ni--Fe-binder exhibits reduced work hardening.
    Type: Grant
    Filed: August 27, 1997
    Date of Patent: February 15, 2000
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt, Uwe Schleinkofer
  • Patent number: 6022175
    Abstract: An elongate rotary tool including at least one cutting edge that is useful in the machining of workpiece materials is disclosed. The elongate rotary tool comprises a cermet comprising at least one hard component and about 0.2 wt. % to 19 wt. % Co--Ni--Fe-binder. The Co--Ni--Fe-binder is unique in that even when subjected to plastic deformation, the binder substantially maintains its face centered cubic (fcc) crystal structure and avoids stress and/or strain induced transformations.
    Type: Grant
    Filed: August 27, 1997
    Date of Patent: February 8, 2000
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt, Uwe Schleinkofer
  • Patent number: 5992546
    Abstract: A rotary tool that includes an elongate tool body and a hard insert affixed to the tool body is disclosed. The hard insert includes a WC-cermet including tungsten carbide and about 5 wt. % to 19 wt. % Co--Ni--Fe-binder. The Co--Ni--Fe-binder is unique in that even when subjected to plastic deformation, the binder substantially maintains its face centered cubic (fcc) crystal structure and avoids stress and/or strain induced transformations.
    Type: Grant
    Filed: August 27, 1997
    Date of Patent: November 30, 1999
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt, Uwe Schleinkofer