Patents by Inventor Hans Zahn
Hans Zahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230091562Abstract: Methods, devices and systems for analyzing precious samples of cells, including single cells are provided. The methods, devices, and systems in various embodiments of the invention are used to assess genomic heterogeneity, which has been recognized as a central feature of many cancers and plays a critical role in disease initiation, progression, and response to treatment. The methods devices and systems are also used to analyze embryonic biopsies for preimplantation genetic diagnosis (PGD). In one embodiment, the devices, systems and methods provided herein allow for the construction of genomic and RNA-seq libraries without a pre-amplification step.Type: ApplicationFiled: May 27, 2022Publication date: March 23, 2023Applicant: The University of British ColumbiaInventors: Carl Lars Genghis Hansen, Hans Zahn, Jens Huft, Marinus Theodorus Johannes VAN LOENHOUT, Kaston Leung, Bill Kengli Lin, Anders Klaus, Samuel Alves Jana Rodrigues APARICIO, Sohrab Prakash Shah, Adi Steif
-
Publication number: 20220365072Abstract: Methods and devices are provided herein for identifying a cell population comprising an effector cell that exerts an extracellular effect. In one embodiment the method comprises retaining in a microreactor a cell population comprising one or more effector cells, wherein the contents of the microreactor further comprise a readout particle population comprising one or more readout particles, incubating the cell population and the readout particle population within the microreactor, assaying the cell population for the presence of the extracellular effect, wherein the readout particle population or subpopulation thereof provides a direct or indirect readout of the extracellular effect, and determining, based on the results of the assaying step, whether one or more effector cells within the cell population exerts the extracellular effect on the readout particle. If an extracellular effect is measured, the cell population is recovered for further analysis to determine the cell or cells responsible for the effect.Type: ApplicationFiled: July 7, 2021Publication date: November 17, 2022Applicant: The University of British ColumbiaInventors: Marketa RICICOVA, Kevin Albert HEYRIES, Hans ZAHN, Oleh PETRIV, Veronique LECAULT, Anupam Singhal, Daniel J. Da Costa, Carl L. G. Hansen, Brad NELSON, Julie NIELSEN, Kathleen Lisaingo
-
Patent number: 11434530Abstract: Methods, devices and systems for analyzing precious samples of cells, including single cells are provided. The methods, devices, and systems in various embodiments of the invention are used to assess genomic heterogeneity, which has been recognized as a central feature of many cancers and plays a critical role in disease initiation, progression, and response to treatment. The methods devices and systems are also used to analyze embryonic biopsies for preimplantation genetic diagnosis (PGD). In one embodiment, the devices, systems and methods provided herein allow for the construction of genomic and RNA-seq libraries without a pre-amplification step.Type: GrantFiled: April 16, 2020Date of Patent: September 6, 2022Assignee: THE UNIVERSITY OF BRITISH COLUMBIAInventors: Carl Lars Genghis Hansen, Hans Zahn, Jens Huft, Marinus Theodorus Johannes Van Loenhout, Kaston Leung, Bill Kengli Lin, Anders Klaus, Samuel Alves Jana Rodrigues Aparicio, Sohrab Prakash Shah, Adi Steif
-
Publication number: 20200363401Abstract: Methods and devices are provided herein for identifying a cell population comprising an effector cell that exerts an extracellular effect. In one embodiment the method comprises retaining in a microreactor a cell population comprising one or more effector cells, wherein the contents of the microreactor further comprise a readout particle population comprising one or more readout particles, incubating the cell population and the readout particle population within the microreactor, assaying the cell population for the presence of the extracellular effect, wherein the readout particle population or subpopulation thereof provides a direct or indirect readout of the extracellular effect, and determining, based on the results of the assaying step, whether one or more effector cells within the cell population exerts the extracellular effect on the readout particle. If an extracellular effect is measured, the cell population is recovered for further analysis to determine the cell or cells responsible for the effect.Type: ApplicationFiled: July 16, 2020Publication date: November 19, 2020Applicant: The University of British ColumbiaInventors: Marketa RICICOVA, Kevin Albert HEYRIES, Hans ZAHN, Oleh PETRIV, Veronique LECAULT, Anupam Singhal, Daniel J. Da Costa, Carl L. G. Hansen, Brad NELSON, Julie NIELSEN, Kathleen Lisaingo
-
Publication number: 20200332357Abstract: Methods, devices and systems for analyzing precious samples of cells, including single cells are provided. The methods, devices, and systems in various embodiments of the invention are used to assess genomic heterogeneity, which has been recognized as a central feature of many cancers and plays a critical role in disease initiation, progression, and response to treatment. The methods devices and systems are also used to analyze embryonic biopsies for preimplantation genetic diagnosis (PGD). In one embodiment, the devices, systems and methods provided herein allow for the construction of genomic and RNA-seq libraries without a pre-amplification step.Type: ApplicationFiled: April 16, 2020Publication date: October 22, 2020Applicant: THE UNIVERSITY OF BRITISH COLUMBIAInventors: Carl Lars Genghis Hansen, Hans Zahn, Jens Huft, Marinus Theodorus Johannes Van Loenhout, Kaston Leung, Bill Kengli Lin, Anders Klaus, Samuel Alves Jana Rodrigues Aparicio, Sohrab Prakash Shah, Adi Steif
-
Patent number: 10760121Abstract: Methods, devices and systems for analyzing precious samples of cells, including single cells are provided. The methods, devices, and systems in various embodiments of the invention are used to assess genomic heterogeneity, which has been recognized as a central feature of many cancers and plays a critical role in disease initiation, progression, and response to treatment. The methods devices and systems are also used to analyze embryonic biopsies for preimplantation genetic diagnosis (PGD). In one embodiment, the devices, systems and methods provided herein allow for the construction of genomic and RNA-seq libraries without a pre-amplification step.Type: GrantFiled: February 4, 2016Date of Patent: September 1, 2020Assignee: The University of British ColumbiaInventors: Carl Lars Genghis Hansen, Hans Zahn, Jens Huft, Marinus Theodorus Johannes Van Loenhout, Kaston Leung, Bill Kengli Lin, Anders Klaus, Samuel Alves Jana Rodrigues Aparicio, Sohrab Prakash Shah, Adi Steif
-
Patent number: 10725024Abstract: Methods and devices are provided herein for identifying a cell population comprising an effector cell that exerts an extracellular effect. In one embodiment the method comprises retaining in a microreactor a cell population comprising one or more effector cells, wherein the contents of the microreactor further comprise a readout particle population comprising one or more readout particles, incubating the cell population and the readout particle population within the microreactor, assaying the cell population for the presence of the extracellular effect, wherein the readout particle population or subpopulation thereof provides a direct or indirect readout of the extracellular effect, and determining, based on the results of the assaying step, whether one or more effector cells within the cell population exerts the extracellular effect on the readout particle. If an extracellular effect is measured, the cell population is recovered for further analysis to determine the cell or cells responsible for the effect.Type: GrantFiled: March 28, 2014Date of Patent: July 28, 2020Assignee: THE UNIVERSITY OF BRITISH COLUMBIAInventors: Marketa Ricicova, Kevin Albert Heyries, Hans Zahn, Oleh Petriv, Veronique Lecault, Anupam Singhal, Daniel J. Da Costa, Carl L. G. Hansen, Brad Nelson, Julie Nielsen, Kathleen Lisaingo
-
Publication number: 20180010179Abstract: Methods, devices and systems for analyzing precious samples of cells, including single cells are provided. The methods, devices, and systems in various embodiments of the invention are used to assess genomic heterogeneity, which has been recognized as a central feature of many cancers and plays a critical role in disease initiation, progression, and response to treatment. The methods devices and systems are also used to analyze embryonic biopsies for reimplantation genetic diagnosis (PGD). In one embodiment, the devices, systems and methods provided herein allow for the construction of genomic and RNA-seq libraries without a pre-amplification step.Type: ApplicationFiled: February 4, 2016Publication date: January 11, 2018Inventors: Carl Lars Genghis Hansen, Hans Zahn, Jens Huft, Marinus Theodorus Johannes Van Loenhout, Kaston Leung, Bill Kengli Lin, Anders Klaus, Samuel Alves Jana Rodrigues Aparicio, Sohrab Prakash Shah, Adi Steif
-
Publication number: 20160252495Abstract: Methods and devices are provided herein for identifying a cell population comprising an effector cell that exerts an extracellular effect. In one embodiment the method comprises retaining in a microreactor a cell population comprising one or more effector cells, wherein the contents of the microreactor further comprise a readout particle population comprising one or more readout particles, incubating the cell population and the readout particle population within the microreactor, assaying the cell population for the presence of the extracellular effect, wherein the readout particle population or subpopulation thereof provides a direct or indirect readout of the extracellular effect, and determining, based on the results of the assaying step, whether one or more effector cells within the cell population exerts the extracellular effect on the readout particle. If an extracellular effect is measured, the cell population is recovered for further analysis to determine the cell or cells responsible for the effect.Type: ApplicationFiled: March 28, 2014Publication date: September 1, 2016Inventors: Marketa Ricicova, Kevin Albert Heyries, Hans Zahn, Oleh Petriv, Veronique Lecault, Anupam Singhal, Daniel J. Da Costa, Carl L. G. Hansen, Brad Nelson, Julie Nielsen, Kathleen Lisaingo
-
Publication number: 20140208832Abstract: Methods of determining a first position at which a dispersed phase droplet wets a surface of a channel are provided herein. The methods include immersing the dispersed phase droplet in a continuous phase fluid, wherein the continuous phase fluid is immiscible with the dispersed phase droplet, subsequently flowing the dispersed phase droplet in the continuous phase through the channel at a dispersed phase droplet velocity, wherein the dispersed phase droplet is separated from the surface by a film of the continuous phase fluid having a film thickness, and reducing the film thickness to rupture the film at the first position, wherein the droplet wets the surface at the first position.Type: ApplicationFiled: September 28, 2012Publication date: July 31, 2014Applicant: The University of British ColumbiaInventors: Carl Lars Genghis Hansen, Kaston K. Leung, Timothy Leaver, Hans Zahn