Patents by Inventor Hansan Liu

Hansan Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10381648
    Abstract: A coated particle comprising a lithium titanate particle core encased by a polyimide coating, an electrode comprising a plurality of polyimide coated LTO particles an electro-active material, and a lithium ion battery comprising an anode, a cathode, a separator and electrolyte wherein the anode comprises a plurality of polyimide coated LTO particles. The polyimide coating effectively reduces the amount of gas formation typically encountered with use of lithium titanate in electrochemical cells.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: August 13, 2019
    Assignee: Talostech LLC
    Inventors: Hansan Liu, Xiaoping Lin
  • Patent number: 9997802
    Abstract: Compositions and methods of making are provided for a high energy density lithium-aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a lithium metal oxide. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of lithium at the cathode.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: June 12, 2018
    Assignee: UT-Battelle, LLC
    Inventors: Gilbert M. Brown, Mariappan Parans Paranthaman, Sheng Dai, Xiao-Guang Sun, Hansan Liu
  • Publication number: 20170033397
    Abstract: Compositions and methods of making are provided for a high energy density lithium-alum inum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a lithium metal oxide. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of lithium at the cathode.
    Type: Application
    Filed: September 6, 2016
    Publication date: February 2, 2017
    Inventors: Gilbert M. Brown, Mariappan Parans Paranthaman, Sheng Dai, Xiao-Guang Sun, Hansan Liu
  • Patent number: 9515318
    Abstract: Compositions and methods of making are provided for mesoporous metal oxide microspheres electrodes. The mesoporous metal oxide microsphere compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (?m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m2/g and 500 m2/g. The methods of making comprise forming composite powders. The methods may also comprise refluxing the composite powders in a basic solution to form an etched powder, washing the etched powder with an acid to form a hydrated metal oxide, and heat-treating the hydrated metal oxide to form mesoporous metal oxide microspheres.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: December 6, 2016
    Assignee: UT-Battelle, LLC
    Inventors: Mariappan Parans Paranthaman, Hansan Liu, Gilbert M. Brown, Xiao-Guang Sun, Zhonghe Bi
  • Publication number: 20160308217
    Abstract: A coated particle comprising a lithium titanate particle core encased by a polyimide coating, an electrode comprising a plurality of polyimide coated LTO particles an electro-active material, and a lithium ion battery comprising an anode, a cathode, a separator and electrolyte wherein the anode comprises a plurality of polyimide coated LTO particles. The polyimide coating effectively reduces the amount of gas formation typically encountered with use of lithium titanate in electrochemical cells.
    Type: Application
    Filed: December 5, 2014
    Publication date: October 20, 2016
    Inventors: Hansan Liu, Xiaoping Lin
  • Patent number: 9466853
    Abstract: Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: October 11, 2016
    Assignees: UT-Battelle, LLC, Board of Regents, The University of Texas System
    Inventors: Gilbert M. Brown, Mariappan Parans Paranthaman, Sheng Dai, Nancy J. Dudney, Arumugan Manthiram, Timothy J. McIntyre, Xiao-Guang Sun, Hansan Liu
  • Publication number: 20120082905
    Abstract: Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.
    Type: Application
    Filed: September 28, 2011
    Publication date: April 5, 2012
    Inventors: Gilbert M. Brown, Mariappan Parans Paranthaman, Sheng Dai, Nancy J. Dudney, Arumugan Manthiram, Timothy J. McIntyre, Xiago-Guang Sun, Hansan Liu
  • Publication number: 20110082024
    Abstract: The invention disclosed relates to porous carbon of spherical morphology having tuned porosity and to a method of making same, comprising: (a) providing a precursor solution, by combining in an aqueous solution a colloidal silica template material and a water-soluble pyrolyzable carbon source, wherein the particle size of the colloidal silica template and the colloidal silica/carbon source weight ratio are controlled, (b) atomizing the precursor solution into small droplets by ultrasonic spray pyrolysis (c) directing the droplets into a high temperature furnace operating at a temperature of 700-1200° C., under an inert gas atmosphere, where the droplets are transformed into solid spherical composite carbon/silica particles, (d) collecting the resulting composite carbon/silica particles exiting from the furnace, and (e) removing the silica from the particles, to provide substantially pure porous carbon of spherical morphology having tuned porosity defined by surface area and pore size.
    Type: Application
    Filed: May 28, 2009
    Publication date: April 7, 2011
    Inventors: Hansan Liu, Jiujun Zhang
  • Publication number: 20070264550
    Abstract: An air-diffusion cathode and methods to make the same. The product and method comprise treating the metal substrate, applying multiple pastes containing catalyst, carbon powder, hydrophilic and hydrophobic property chemicals onto a metal substrate for cathodes in fuel cells, in which the metal substrate has a mesh or foam structure.
    Type: Application
    Filed: March 30, 2007
    Publication date: November 15, 2007
    Applicant: Magpower Systems Inc.
    Inventors: Lei Zhang, Hansan Liu, Jiujun Zhang, Debabrata Ghosh, Joey Jung, Bruce Downing