Patents by Inventor Hansang KWON

Hansang KWON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11904390
    Abstract: This application relates to a method of manufacturing an electrostatic chuck having a high heat dissipation property and high thermal shock resistance and being lightweight, and an electrostatic chuck manufactured by the method. In one aspect, the method includes preparing a composite powder by milling (i) aluminum or aluminum alloy powder and (ii) carbon-based nanomaterial powder through ball milling. The method may also include manufacturing a multilayer billet including a core layer and one or more shell layers surrounding the core layer, in which at least one of the core and shell layers contains the composite powder. The method may further include extruding the multilayer billet to form an electrode layer and forming a dielectric layer on the electrode layer.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: February 20, 2024
    Assignee: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Hansang Kwon
  • Patent number: 11908726
    Abstract: This application relates to a method of manufacturing an electrostatic chuck having good characteristics in heat dissipation, thermal shock resistance, and lightness. In one aspect, the method includes preparing a composite powder by ball-milling (i) aluminum or aluminum alloy powder and (ii) carbon-based nanomaterial powder. The method may also include preparing an electrode layer by sintering the composite powder through spark plasma sintering (SPS), and forming a dielectric layer on the electrode layer.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: February 20, 2024
    Assignee: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Hansang Kwon
  • Publication number: 20230405672
    Abstract: The present invention relates to a method for manufacturing a heterogeneous composite material thin plate, and a heterogeneous composite material thin plate manufactured thereby, the method comprising the steps of: (a) manufacturing a composite powder by ball milling an aluminum or aluminum alloy powder and a carbon nanotube powder; (b) manufacturing a multilayer billet comprising the composite powder, and comprising a core layer and two or more shell layers that encompass the core layer, the core layer being formed of the composite powder or an aluminum alloy, the shell layers excluding the outermost shell layer and being formed of the composite powder, and the outermost shell layer being formed of (i) an aluminum or aluminum alloy powder or (ii) the composite powder; (c) manufacturing an extruded material by extruding the multilayer billet; and (d) rolling the extruded material to mold same into a thin plate shape.
    Type: Application
    Filed: October 15, 2021
    Publication date: December 21, 2023
    Applicant: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Hansang KWON
  • Publication number: 20230373002
    Abstract: The present invention relates to a method for manufacturing a heterogeneous composite material thin plate and a heterogeneous composite material thin plate manufactured by same, the method comprising the steps of: (a) ball-milling an aluminum or aluminum alloy powder and a carbon nanotube powder so as to prepare a composite powder; (b) preparing a multi-layered billet comprising the composite powder, the multi-layered billet characterized by comprising a core layer and two or more shell layers surrounding the core layer, wherein the core layer is made of the composite powder or an aluminum alloy, the shell layers excluding the outermost shell layer are made of the composite powder, and the outermost shell layer is made of (i) an aluminum or aluminum alloy powder or (ii) the composite powder; and (c) rolling the multi-layered billet so as to form a thin plate shape.
    Type: Application
    Filed: October 15, 2021
    Publication date: November 23, 2023
    Applicant: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Hansang KWON
  • Patent number: 11633783
    Abstract: Disclosed are a method of manufacturing a billet used in plastic working for producing a composite member and a billet manufactured by the method. The method includes (A) ball-milling powders of two more materials to prepare a composite powder and (B) preparing a multi-layered billet containing the composite powder. The multi-layered billet includes a core layer and two or more shell layers. The shell layers except for the outermost shell layer are made of the composite powder. The outermost shell layer is made of a pure metal or metal alloy. The composite powders contained in the core layer and each of the shell layers have different compositions. The method has an advantage of manufacturing a plastic working billet being capable of overcoming the limitation of a single-material billet and enabling production of a characteristic-specific composite member such as a clad member.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: April 25, 2023
    Assignee: PUKYONG NATIONAL UNIVERSITY INDUSTRY-UNIVERSITY COOPERATION FOUNDATION
    Inventor: Hansang Kwon
  • Patent number: 11628496
    Abstract: Disclosed are a method of manufacturing an aluminum-based clad heat sink, and an aluminum-based clad heat sink manufactured by the method. The method includes ball-milling (i) aluminum or aluminum alloy powder and (ii) carbon nanotubes (CNT) to prepare a composite powder, preparing a multi-layered billet using the composite billet, and directly extruding the multi-layered billet using an extrusion die to produce a heat sink. The method has an advantage of producing a light high-strength high-conductivity aluminum-based clad heat sink having an competitive advantage in terms of price by using direct extrusion that is suitable for mass production due to its simplicity in process procedure and equipment required.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: April 18, 2023
    Assignee: PUKYONG NATIONAL UNIVERSITY INDUSTRY-UNIVERSITY COOPERATION FOUNDATION
    Inventor: Hansang Kwon
  • Patent number: 11592473
    Abstract: This application relates to a method of preparing a composite material for a semiconductor test socket, and a composite material prepared through the method. In one embodiment, the method includes preparing a powder mixture including (i) a metal powder comprising aluminum or aluminum alloy particles and magnesium particles and (ii) a polymer powder. The method may also include sintering the powder mixture to produce the composite material using a spark plasma sintering (SPS) process. This application also relates to a method of manufacturing a semiconductor test socket, the method including forming an insulating portion of the semiconductor test socket with the composite material. This application further relates to a semiconductor test socket produced through the method.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: February 28, 2023
    Assignee: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Hansang Kwon
  • Patent number: 11583921
    Abstract: Disclosed are a method of manufacturing an aluminum alloy clad section, and an aluminum alloy clad section manufactured by the method. The method includes preparing a composite powder by ball-milling aluminum powder and carbon nanotubes, preparing a billet from the composite powder, and subjecting the billet to direct extrusion using an extrusion die. The method is simple in procedure and uses simple equipment because it is based on direct extrusion which is suitable for mass production. Thus, the method is capable of producing a lightweight high-strength functional aluminum alloy clad section having a competitive advantage in terms of price over conventional aluminum alloy clad sections.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: February 21, 2023
    Assignee: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Hansang Kwon
  • Patent number: 11577313
    Abstract: This application relates to a method of preparing a composite material for an electric wiring connector. In one embodiment, the method includes preparing a powder mixture including (i) a metal powder composed of aluminum or aluminum alloy particles and magnesium particles and (ii) a polymer powder. The method may also include sintering the powder mixture to produce a composite material for the electric wiring connector using a spark plasma sintering (SPS) process. This application also relates to a composite material for an electric wiring connector prepared through the method described above. This application further relates to a method of manufacturing an electric wiring connector, the method including forming a housing of the electric wiring connector with the composite material. This application further relates to an electric wiring connector manufactured by the method.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: February 14, 2023
    Assignee: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Hansang Kwon
  • Publication number: 20230019810
    Abstract: A method of manufacturing an extruded material of carbon nanotube reinforced aluminum matrix composite having improved corrosion resistance, and the extruded material manufactured thereby are proposed. The method may include manufacturing an extruded material comprising an aluminum-carbon nanotube composite material and forming a hard oxide film on the surface of the extruded material by anodizing the extruded material in a mixed solution of sulfuric acid and oxalic acid. The method can form a hard oxide film with excellent corrosion resistance, abrasion resistance, and insulation properties on the surface of a composite material (an extruded material of carbon nanotube reinforced aluminum matrix composite material), which is known to be difficult to conduct hard anodizing due to the difference in corrosion characteristics between materials and, accordingly, the usability of the composite material can be significantly improved.
    Type: Application
    Filed: September 26, 2022
    Publication date: January 19, 2023
    Inventor: Hansang Kwon
  • Publication number: 20220362845
    Abstract: A method of manufacturing a composite material for thermal shields, and a composite material manufactured by the method are proposed. The method may include preparing a mixed powder including (i) a metal powder including a powder of aluminum or aluminum alloy and (ii) a polymer or ceramic powder. The method may also include sintering the mixed powder through pressureless sintering or spark plasma sintering to produce a composite material. According to the present disclosure, a powder of polymer, ceramic, and/or metal which have a relatively low level of thermal conductivity can be compounded with a metal material including aluminum through a sintering process of powder metallurgy, such as pressureless sintering or spark plasma sintering. Thus, a heterogeneous composite material with a low-level thermal conductivity (10 W/mk or less) can be obtained, and the composite material can be used as a material for various thermal shields.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 17, 2022
    Inventor: Hansang Kwon
  • Publication number: 20220355374
    Abstract: This application relates to a method of manufacturing an electrostatic chuck having a high heat dissipation property and high thermal shock resistance and being lightweight, and an electrostatic chuck manufactured by the method. In one aspect, the method includes preparing a composite powder by milling (i) aluminum or aluminum alloy powder and (ii) carbon-based nanomaterial powder through ball milling. The method may also include manufacturing a multilayer billet including a core layer and one or more shell layers surrounding the core layer, in which at least one of the core and shell layers contains the composite powder. The method may further include extruding the multilayer billet to form an electrode layer and forming a dielectric layer on the electrode layer.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 10, 2022
    Inventor: Hansang Kwon
  • Publication number: 20220359256
    Abstract: This application relates to a method of manufacturing an electrostatic chuck having good characteristics in heat dissipation, thermal shock resistance, and lightness. In one aspect, the method includes preparing a composite powder by ball-milling (i) aluminum or aluminum alloy powder and (ii) carbon-based nanomaterial powder. The method may also include preparing an electrode layer by sintering the composite powder through spark plasma sintering (SPS), and forming a dielectric layer on the electrode layer.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 10, 2022
    Inventor: Hansang Kwon
  • Publication number: 20220355376
    Abstract: A method for manufacturing a functionally graded composite material for a printed circuit board (PCB) is proposed. The method may include preparing two or more types of mixed powders with different contents of polymer or ceramic powder, each mixed powder comprising (i) a metal powder comprising a powder made of aluminum or an aluminum alloy and a powder of magnesium and (ii) the polymer or ceramic powder. The method may also include laminating the two or more types of mixed powders to form a functionally graded laminate in which a ratio of the content of the polymer or ceramic powder to the content of the metal powder in each of layers stacked in sequence from bottom to the top of the laminate differs. The method may further include preparing a functionally graded composite material by sintering the functionally graded laminate by pressureless sintering or spark plasma sintering.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventor: Hansang Kwon
  • Publication number: 20210331238
    Abstract: This application relates to a method of manufacturing a cooling pipe for a powertrain of an electric vehicle. The method may include preparing a powdered composite material by ball-milling aluminum alloy particles and carbon nanotube particles. The method may also include preparing a multilayer billet containing the powdered composite material and comprising a core layer and two or more shell layers surrounding the core layer. The method may further include extruding the multilayer billet to produce a pipe-shaped extrusion. The core layer is made of the powdered composite material or an aluminum alloy, the outermost shell layer of the two or more shell layers is made of an aluminum alloy, and the remaining shell layers are made of an aluminum alloy. This application also relates to a cooling pipe manufactured by the method, an electric vehicle motor and an electric vehicle battery pack casing including the cooling pipe.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 28, 2021
    Inventor: Hansang Kwon
  • Publication number: 20210325449
    Abstract: This application relates to a method of preparing a composite material for a semiconductor test socket, and a composite material prepared through the method. In one embodiment, the method includes preparing a powder mixture including (i) a metal powder comprising aluminum or aluminum alloy particles and magnesium particles and (ii) a polymer powder. The method may also include sintering the powder mixture to produce the composite material using a spark plasma sintering (SPS) process. This application also relates to a method of manufacturing a semiconductor test socket, the method including forming an insulating portion of the semiconductor test socket with the composite material. This application further relates to a semiconductor test socket produced through the method.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 21, 2021
    Inventor: Hansang Kwon
  • Publication number: 20210323059
    Abstract: This application relates to a method of preparing a composite material for an electric wiring connector. In one embodiment, the method includes preparing a powder mixture including (i) a metal powder composed of aluminum or aluminum alloy particles and magnesium particles and (ii) a polymer powder. The method may also include sintering the powder mixture to produce a composite material for the electric wiring connector using a spark plasma sintering (SPS) process. This application also relates to a composite material for an electric wiring connector prepared through the method described above. This application further relates to a method of manufacturing an electric wiring connector, the method including forming a housing of the electric wiring connector with the composite material. This application further relates to an electric wiring connector manufactured by the method.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 21, 2021
    Inventor: Hansang Kwon
  • Patent number: 11053568
    Abstract: The present invention provides a method of manufacturing a single-walled-carbon-nanotube-reinforced metal matrix complex material. The method includes (a) manufacturing a complex powder by performing ball milling of a metal powder and a single-walled carbon nanotube powder, and (b) manufacturing a metal-carbon-nanotube complex material by spark-plasma-sintering (SPS) the complex powder manufactured during step (a). According to the method of manufacturing the single-walled-carbon-nanotube-reinforced metal matrix complex material according to the present invention, in order to manufacture material parts requiring high strength and abrasion resistance, the single-walled carbon nanotube powder is added to various metal matrixes and ball milling is performed, thus manufacturing a complex powder having uniform dispersity.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: July 6, 2021
    Assignee: PUKYONG NATIONAL UNIVERSITY INDUSTRY—UNIVERSITY COOPERATION FOUNDATION
    Inventor: Hansang Kwon
  • Publication number: 20210008616
    Abstract: This application relates to a method of manufacturing a metal-polymer composite material having high thermal conductivity and electrical insulating properties. The method may include preparing a powder mixture comprising polymer powder and metal powder, and spark plasma sintering (SPS) the powder mixture to produce a composite material. This application also relates to a metal-polymer composite material having high thermal conductivity and electrical insulating properties, manufactured by the method.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 14, 2021
    Inventor: Hansang Kwon
  • Publication number: 20200331066
    Abstract: Disclosed are a method of manufacturing an aluminum-based clad heat sink, and an aluminum-based clad heat sink manufactured by the method. The method includes ball-milling (i) aluminum or aluminum alloy powder and (ii) carbon nanotubes (CNT) to prepare a composite powder, preparing a multi-layered billet using the composite billet, and directly extruding the multi-layered billet using an extrusion die to produce a heat sink. The method has an advantage of producing a light high-strength high-conductivity aluminum-based clad heat sink having an competitive advantage in terms of price by using direct extrusion that is suitable for mass production due to its simplicity in process procedure and equipment required.
    Type: Application
    Filed: May 31, 2019
    Publication date: October 22, 2020
    Applicant: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Hansang KWON