Patents by Inventor Hanson Gifford
Hanson Gifford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250041056Abstract: Systems, apparatuses, and methods for treating native heart valves are disclosed herein. A system for delivering a prosthetic device into a heart of a patient includes an elongated catheter body and a delivery capsule. The delivery capsule can be hydraulically driven to deploy at least a portion of a prosthetic heart valve device. The delivery capsule can release the prosthetic heart valve device at a desired treatment site in a patient.Type: ApplicationFiled: October 25, 2024Publication date: February 6, 2025Applicant: Twelve, Inc.Inventors: Mark Deem, Hanson Gifford, III, John Morriss, Matt McLean, Michael Luna
-
Publication number: 20250032284Abstract: Delivery systems for delivering an aortic repair device to treat a diseased portion of the aorta of a patient at or near the aortic arch and associated devices and methods are disclosed herein. A delivery system configured in accordance with embodiments of the present technology can include an outer catheter, an inner catheter assembly extending at least partially through the outer catheter, a handle, a tip capture mechanism configured to releasably secure an end portion of the aortic repair device, and a release wire actuatable to release the end portion from the tip capture mechanism. The handle can be actuated to retract the outer catheter relative to the inner catheter assembly to deploy the aortic repair device. The handle can also be actuated to advance a portion of the inner catheter assembly relative to the outer catheter to reorient and position the end portion of the aortic repair device.Type: ApplicationFiled: July 25, 2024Publication date: January 30, 2025Inventors: Richard Roy Newhauser, G Ray Martin, Steven Kim, Tony Le, Morgan Jawitz, Simon Nguyen, Hanson Gifford, Brian Tachibana
-
Patent number: 12161552Abstract: Systems, apparatuses, and methods for treating native heart valves are disclosed herein. A system for delivering a prosthetic device into a heart of a patient includes an elongated catheter body and a delivery capsule. The delivery capsule can be hydraulically driven to deploy at least a portion of a prosthetic heart valve device. The delivery capsule can release the prosthetic heart valve device at a desired treatment site in a patient.Type: GrantFiled: September 27, 2021Date of Patent: December 10, 2024Assignee: Twelve, Inc.Inventors: Mark Deem, Hanson Gifford, III, John Morriss, Matt McLean, Michael Luna
-
Patent number: 11974804Abstract: Methods and apparatus are provided for treating hypertension, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.Type: GrantFiled: July 1, 2021Date of Patent: May 7, 2024Assignee: Medtronic Ireland Manufacturing Unlimited CompanyInventors: Denise Zarins, Hanson Gifford, III, Mark E. Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
-
Publication number: 20230380953Abstract: Aortic repair devices and associated systems and methods are disclosed herein. An aortic repair device configured in accordance with embodiments of the present technology can include a base member configured to be implanted in an aorta proximate to a diseased portion of the aorta, such as an aneurysm or dissection. The base member can direct blood flow past the diseased portion of the aorta to perfuse a portion of the aorta distal of the diseased portion. In some embodiments, one or more branch members can be coupled to the base member during the same or a separate intravascular procedure to perfuse one or more branching vessels of the patient's aorta. The branch members can be coupled to the base member via an ex situ or in situ fenestration formed through the base member.Type: ApplicationFiled: May 26, 2023Publication date: November 30, 2023Inventors: G Ray Martin, Steven Kim, Hanson Gifford, Katie Miyashiro, Doug Sutton
-
Publication number: 20230330009Abstract: Methods and apparatus are provided for applying an fragment of a neurotoxin such as the active light chain (LC) of the botulinum toxin (BoNT), such as one of the serotype A, B, C, D, E, F or G botulinum toxins, via permeabilization of targeted cell membranes to enable translocation of the botulinum neurotoxin light chain (BoNT-LC) molecule across the targeted cell membrane to the cell cytosol where a therapeutic response is produced in a mammalian system. The methods and apparatus include use of catheter based delivery systems, non-invasive delivery systems, and transdermal delivery systems.Type: ApplicationFiled: June 5, 2023Publication date: October 19, 2023Inventors: Mark E. Deem, Hanson Gifford
-
Publication number: 20230285274Abstract: Methods and apparatus are provided for applying an fragment of a neurotoxin such as the active light chain (LC) of the botulinum toxin (BoNT), such as one of the serotype A, B, C, D, E, F or G botulinum toxins, via permeabilization of targeted cell membranes to enable translocation of the botulinum neurotoxin light chain (BoNT-LC) molecule across the targeted cell membrane to the cell cytosol where a therapeutic response is produced in a mammalian system. The methods and apparatus include use of catheter based delivery systems, non-invasive delivery systems, and transdermal delivery systems.Type: ApplicationFiled: March 3, 2023Publication date: September 14, 2023Inventors: Mark E. Deem, Hanson Gifford
-
Publication number: 20230277297Abstract: Aortic repair devices and associated systems and methods are disclosed herein. An aortic repair device configured in accordance with embodiments of the present technology can include a base member configured to be implanted in an aorta proximate to a diseased portion of the aorta, such as an aneurysm or dissection. The base member can direct blood flow past the diseased portion of the aorta to perfuse a portion of the aorta distal of the diseased portion and/or various branch vessels. In some embodiments, one or more spanning members or other implants can be coupled (e.g., docked) to the base member during the same or a separate intravascular procedure to provide additional flow paths past the diseased portion.Type: ApplicationFiled: March 6, 2023Publication date: September 7, 2023Inventors: G Ray Martin, Steven Kim, Hanson Gifford, Katie Miyashiro, Doug Sutton, Anuja Harshadray Patel, Richard Roy Newhauser, JR.
-
Patent number: 11679077Abstract: Methods and apparatus are provided for applying an fragment of a neurotoxin such as the active light chain (LC) of the botulinum toxin (BoNT), such as one of the serotype A, B, C, D, E, F or G botulinum toxins, via permeabilization of targeted cell membranes to enable translocation of the botulinum neurotoxin light chain (BoNT-LC) molecule across the targeted cell membrane to the cell cytosol where a therapeutic response is produced in a mammalian system. The methods and apparatus include use of catheter based delivery systems, non-invasive delivery systems, and transdermal delivery systems.Type: GrantFiled: January 19, 2021Date of Patent: June 20, 2023Assignee: The Foundry, LLCInventors: Mark E. Deem, Hanson Gifford
-
Patent number: 11666526Abstract: Methods and apparatus are provided for applying an fragment of a neurotoxin such as the active light chain (LC) of the botulinum toxin (BoNT), such as one of the serotype A, B, C, D, E, F or G botulinum toxins, via permeabilization of targeted cell membranes to enable translocation of the botulinum neurotoxin light chain (BoNT-LC) molecule across the targeted cell membrane to the cell cytosol where a therapeutic response is produced in a mammalian system. The methods and apparatus include use of catheter based delivery systems, non-invasive delivery systems, and transdermal delivery systems.Type: GrantFiled: August 4, 2020Date of Patent: June 6, 2023Assignee: The Foundry, LLCInventors: Mark E. Deem, Hanson Gifford
-
Patent number: 11628063Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.Type: GrantFiled: March 29, 2022Date of Patent: April 18, 2023Assignee: Twelve, Inc.Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
-
Patent number: 11617648Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.Type: GrantFiled: March 29, 2022Date of Patent: April 4, 2023Assignee: Twelve, Inc.Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
-
Patent number: 11576782Abstract: Systems, devices and methods for repairing a native heart valve. In one embodiment, a repair device for repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle comprises a support having a contracted configuration and an extended configuration, and an appendage, such as a flap or apron extending from the support. In the contracted configuration, the support is sized to be inserted under the posterior leaflet between a wall of the left ventricle and chordae tendineae. In the extended configuration, the support is configured to project anteriorly with respect to a posterior wall of the left ventricle by a distance sufficient to position at least a portion of the posterior leaflet toward the anterior leaflet, and the appendage is configured to extend beyond an edge of the posterior leaflet toward the anterior leaflet.Type: GrantFiled: November 2, 2020Date of Patent: February 14, 2023Assignee: TWELVE, INC.Inventor: Hanson Gifford, III
-
Patent number: 11497603Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.Type: GrantFiled: March 29, 2022Date of Patent: November 15, 2022Assignee: Twelve, Inc.Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
-
Publication number: 20220346948Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.Type: ApplicationFiled: July 5, 2022Publication date: November 3, 2022Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
-
Publication number: 20220331099Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.Type: ApplicationFiled: July 5, 2022Publication date: October 20, 2022Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
-
Publication number: 20220218473Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.Type: ApplicationFiled: March 29, 2022Publication date: July 14, 2022Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
-
Publication number: 20220218474Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.Type: ApplicationFiled: March 29, 2022Publication date: July 14, 2022Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
-
Publication number: 20220218472Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.Type: ApplicationFiled: March 29, 2022Publication date: July 14, 2022Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
-
Publication number: 20220110747Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.Type: ApplicationFiled: December 19, 2021Publication date: April 14, 2022Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley