Patents by Inventor Hanson Gifford, III

Hanson Gifford, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170202617
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Andrew Wu, Hanson Gifford, III, Mark Deem, Mark Gelfand, Howard R. Levin
  • Patent number: 9707035
    Abstract: Methods and apparatus are provided for monopolar neuromodulation, e.g., via a pulsed electric field. Such monopolar neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, monopolar neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such monopolar neuromodulation is performed bilaterally.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: July 18, 2017
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Howard R. Levin, Mark Gelfand, Nicolas Zadno
  • Publication number: 20170165057
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Application
    Filed: March 14, 2014
    Publication date: June 15, 2017
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Patent number: 9675413
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for percutaneous intravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: June 13, 2017
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark E. Deem, Hanson Gifford, III, Denise Zarins, Douglas Sutton, Erik Thai, Mark Gelfand, Howard R. Levin
  • Publication number: 20170143481
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Application
    Filed: January 25, 2017
    Publication date: May 25, 2017
    Inventors: John Morriss, Hanson Gifford, III
  • Patent number: 9655722
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 23, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Publication number: 20170128204
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Application
    Filed: January 25, 2017
    Publication date: May 11, 2017
    Inventors: John Morriss, Hanson Gifford, III
  • Publication number: 20170128209
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Application
    Filed: January 26, 2017
    Publication date: May 11, 2017
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Patent number: 9636174
    Abstract: Methods and apparatus are provided for treating hypertension, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: May 2, 2017
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Publication number: 20170080214
    Abstract: Methods and apparatus are provided for bilateral renal neuromodulation, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 23, 2017
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Publication number: 20170080230
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Application
    Filed: September 1, 2016
    Publication date: March 23, 2017
    Inventors: Mark Deem, Denise Zarins, Douglas Sutton, Hanson Gifford, III, Howard R. Levin, Mark Gelfand, Benjamin J. Clark
  • Publication number: 20170065337
    Abstract: Methods and apparatus are provided for monopolar neuromodulation, e.g., via a pulsed electric field. Such monopolar neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, monopolar neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such monopolar neuromodulation is performed bilaterally.
    Type: Application
    Filed: August 8, 2016
    Publication date: March 9, 2017
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Howard R. Levin, Mark Gelfand, Nicolas Zadno
  • Publication number: 20170065336
    Abstract: Methods and apparatus are provided for treating hypertension, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Application
    Filed: March 17, 2016
    Publication date: March 9, 2017
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Patent number: 9585751
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: March 7, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III
  • Patent number: 9579196
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: February 28, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III
  • Patent number: 9579198
    Abstract: Systems, apparatuses, and methods for treating native heart valves are disclosed herein. A system for delivering a prosthetic device into a heart of a patient includes an elongated catheter body and a delivery capsule. The delivery capsule can be hydraulically driven to deploy at least a portion of a prosthetic heart valve device. The delivery capsule can release the prosthetic heart valve device at a desired treatment site in a patient.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 28, 2017
    Assignee: Twelve, Inc.
    Inventors: Mark Deem, Hanson Gifford, III, John Morriss, Matt McLean, Michael Luna
  • Publication number: 20170049571
    Abstract: Systems, devices and methods for repairing a native heart valve. In one embodiment, a repair device for repairing a native mitral valve having an anterior leaflet and a posterior leaflet between a left atrium and a left ventricle comprises a support having a contracted configuration and an extended configuration, and an appendage, such as a flap or apron extending from the support. In the contracted configuration, the support is sized to be inserted under the posterior leaflet between a wall of the left ventricle and chordae tendineae. In the extended configuration, the support is configured to project anteriorly with respect to a posterior wall of the left ventricle by a distance sufficient to position at least a portion of the posterior leaflet toward the anterior leaflet, and the appendage is configured to extend beyond an edge of the posterior leaflet toward the anterior leaflet.
    Type: Application
    Filed: August 19, 2016
    Publication date: February 23, 2017
    Inventor: Hanson Gifford, III
  • Patent number: 9572662
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: February 21, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III
  • Publication number: 20170035569
    Abstract: Systems, apparatuses, and methods for treating native heart valves are disclosed herein. A system for delivering a prosthetic device into a heart of a patient includes an elongated catheter body and a delivery capsule. The delivery capsule can be hydraulically driven to deploy at least a portion of a prosthetic heart valve device. The delivery capsule can release the prosthetic heart valve device at a desired treatment site in a patient.
    Type: Application
    Filed: October 6, 2016
    Publication date: February 9, 2017
    Inventors: Mark Deem, Hanson Gifford, III, John Morriss, Matt McLean, Michael Luna
  • Publication number: 20170014183
    Abstract: The present invention provides devices and methods for decalcifying an aortic valve. The methods and devices of the present invention break up or obliterate calcific deposits in and around the aortic valve through application or removal of heat energy from the calcific deposits.
    Type: Application
    Filed: July 18, 2016
    Publication date: January 19, 2017
    Inventors: Hanson Gifford, III, Mark Deem, Stephen Boyd