Patents by Inventor Hao-An Chuang

Hao-An Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12272634
    Abstract: A semiconductor structure includes a source/drain (S/D) region, one or more dielectric layers over the S/D region, one or more semiconductor channel layers connected to the S/D region, an isolation structure under the S/D region and the one or more semiconductor channel layers, and a via under the S/D region and electrically connected to the S/D region. A lower portion of the via is surrounded by the isolation structure and an upper portion of the via extends vertically between the S/D region and the isolation structure.
    Type: Grant
    Filed: April 17, 2023
    Date of Patent: April 8, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Yuan Chen, Huan-Chieh Su, Cheng-Chi Chuang, Chih-Hao Wang
  • Patent number: 12266563
    Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a substrate. A gate electrode is over the substrate and a spacer structure laterally surrounds the gate electrode. A conductive via is disposed on the gate electrode. A liner is arranged along one or more sidewalls of the spacer structure. The conductive via has a bottommost surface that has a larger width than a part of the conductive via that is laterally adjacent to one or more interior sidewalls of the liner.
    Type: Grant
    Filed: November 16, 2023
    Date of Patent: April 1, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Zhen Yu, Cheng-Chi Chuang, Chih-Hao Wang, Yu-Ming Lin, Lin-Yu Huang
  • Patent number: 12266658
    Abstract: A semiconductor structure includes an isolation structure, a source/drain region over the isolation structure, a gate structure over the isolation structure and adjacent to the source/drain region, an interconnect layer over the source/drain region and the gate structure, an isolating layer below the gate structure, and a contact structure under the source/drain region. The contact structure has a first portion and a second portion. The first portion is below the second portion. The second portion extends through the isolating layer and protrudes above the isolating layer. A portion of the isolating layer is vertically between the gate structure and the first portion of the contact structure.
    Type: Grant
    Filed: July 21, 2023
    Date of Patent: April 1, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Yuan Chen, Huan-Chieh Su, Cheng-Chi Chuang, Chih-Hao Wang
  • Patent number: 12266700
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a stack of semiconductor nanostructures over a base structure and a first epitaxial structure and a second epitaxial structure sandwiching the semiconductor nanostructures. The semiconductor device structure also includes a gate stack wrapped around each of the semiconductor nanostructures and a backside conductive contact connected to the second epitaxial structure. A first portion of the backside conductive contact is directly below the base structure, and a second portion of the backside conductive contact extends upwards to approach a bottom surface of the second epitaxial structure. The semiconductor device structure further includes an insulating spacer between a sidewall of the base structure and the backside conductive contact.
    Type: Grant
    Filed: May 6, 2024
    Date of Patent: April 1, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Shih-Chuan Chiu, Cheng-Chi Chuang, Chih-Hao Wang
  • Publication number: 20250107268
    Abstract: A plurality of holes in a top surface of a silicon medium form a plurality of sub-meta lenses to result in multiple focal points rather than a single point (resulting from using a single meta lens). As a result, optical paths for incoming light are reduced as compared with a single optical path associated with a single meta lens, which in turn reduces angular response of incident photons. Thus, a pixel sensor including the plurality of sub-meta lenses experiences improved light focus and greater signal-to-noise ratio. Additionally, dimensions of the pixel sensor are reduced (particularly a height of the pixel sensor), which allows for greater miniaturization of an image sensor that includes the pixel sensor.
    Type: Application
    Filed: September 22, 2023
    Publication date: March 27, 2025
    Inventors: Yi-Hsuan WANG, Cheng Yu HUANG, Chun-Hao CHUANG, Keng-Yu CHOU, Wen-Hau WU, Wei-Chieh CHIANG, Chih-Kung CHANG
  • Publication number: 20250107222
    Abstract: A method of fabricating a semiconductor device includes providing a dummy structure having a plurality of channel layers, an inner spacer disposed between adjacent channels of the plurality of channel layers and at a lateral end of the channel layers, and a gate structure including a gate dielectric layer and a metal layer interposing the plurality of channel layers. The dummy structure is disposed at an active edge adjacent to an active region. A metal gate etching process is performed to remove the metal layer from the gate structure while the gate dielectric layer remains disposed at a channel layer-inner spacer interface. After performing the metal gate etching process, a dry etching process is performed to form a cut region along the active edge. The gate dielectric layer disposed at the channel layer-inner spacer interface prevents the dry etching process from damaging a source/drain feature within the adjacent active region.
    Type: Application
    Filed: December 6, 2024
    Publication date: March 27, 2025
    Inventors: Li-Yang CHUANG, Jia-Chuan YOU, Kuo-Cheng CHIANG, Chih-Hao WANG
  • Publication number: 20250107203
    Abstract: A device includes a substrate, an isolation structure over the substrate, a gate structure over the isolation structure, a gate spacer on a sidewall of the gate structure, a source/drain (S/D) region adjacent to the gate spacer, a silicide on the S/D region, a dielectric liner over a sidewall of the gate spacer and on a top surface of the isolation structure, wherein a bottom surface of the dielectric liner is above a top surface of the silicide layer and spaced away from the top surface of the silicide layer in a cross-sectional plane perpendicular to a lengthwise direction of the gate structure.
    Type: Application
    Filed: December 9, 2024
    Publication date: March 27, 2025
    Inventors: Lin-Yu Huang, Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20250107245
    Abstract: An electrostatic discharge protection device includes a P-type substrate, an N-type well, a first P-type heavily-doped area, an N-type doped area, and a first N-type heavily-doped area. The N-type well is formed in the P-type substrate. The first P-type heavily-doped area is formed in the N-type well. The N-type doped area and the first N-type heavily-doped area are formed in the P-type substrate. The N-type doped area is coupled to the N-type well through an external conductive wire decoupled to the first P-type heavily-doped area. Alternatively, the P-type substrate and the N-type well are respectively replaced with an N-type substrate and a P-type well.
    Type: Application
    Filed: September 26, 2023
    Publication date: March 27, 2025
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: Chih-Wei CHEN, Che-Hao CHUANG, Kun-Hsien LIN
  • Publication number: 20250098343
    Abstract: Various embodiments of the present application are directed towards an image sensor including a wavelength tunable narrow band filter, as well as methods for forming the image sensor. In some embodiments, the image sensor includes a substrate, a first photodetector, a second photodetector, and a filter. The first and second photodetectors neighbor in the substrate. The filter overlies the first and second photodetectors and includes a first distributed Bragg reflector (DBR), a second DBR, and a first interlayer between the first and second DBRs. A thickness of the first interlayer has a first thickness value overlying the first photodetector and a second thickness value overlying the second photodetector. In some embodiments, the filter is limited to a single interlayer. In other embodiments the filter further includes a second interlayer defining columnar structures embedded in the first interlayer and having a different refractive index than the first interlayer.
    Type: Application
    Filed: December 4, 2024
    Publication date: March 20, 2025
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Kazuaki Hashimoto, Keng-Yu Chou, Wei Chieh Chiang, Wen-Hau Wu, Chih-Kung Chang
  • Publication number: 20250098237
    Abstract: Semiconductor structures and methods of forming the same are provided. In an embodiment, an exemplary semiconductor structure includes a first transistor. The first transistor includes a first gate structure wrapping around a plurality of first nanostructures disposed over a substrate, a first source/drain feature electrically coupled to a topmost nanostructure of the plurality of first nanostructures and isolated from a bottommost nanostructure of the plurality of first nanostructures by a first dielectric layer, and a first semiconductor layer disposed between the substrate and the first source/drain feature, wherein the first source/drain feature is in direct contact with a top surface of the first semiconductor layer.
    Type: Application
    Filed: January 4, 2024
    Publication date: March 20, 2025
    Inventors: Jung-Hung Chang, Shih-Cheng Chen, Tsung-Han Chuang, Wen-Ting Lan, Chia-Cheng Tsai, Kuo-Cheng Chiang, Chih-Hao Wang
  • Publication number: 20250098219
    Abstract: A device includes: a substrate having a semiconductor fin; a stack of semiconductor channels on the substrate and positioned over the fin; a gate structure wrapping around the semiconductor channels; a source/drain abutting the semiconductor channels; an inner spacer positioned between the stack of semiconductor channels and the fin; an undoped semiconductor layer vertically adjacent the source/drain and laterally adjacent the fin; and an isolation structure that laterally surrounds the undoped semiconductor layer, the isolation structure being between the source/drain and the inner spacer.
    Type: Application
    Filed: February 15, 2024
    Publication date: March 20, 2025
    Inventors: Jung-Hung CHANG, Shih-Cheng CHEN, Tsung-Han CHUANG, Fu-Cheng CHANG, Wen-Ting LAN, Chia-Cheng TSAI, Kuo-Cheng CHIANG, Chih-Hao WANG, Wang-Chun Huang, Shi-Syuan Huang
  • Patent number: 12255103
    Abstract: A method includes receiving a substrate having a front side and a back side, forming a shallow trench in the substrate from the front side, forming a liner layer including a first dielectric material in the shallow trench, depositing a second dielectric material different from the first dielectric material on the liner layer to form an isolation feature in the shallow trench, forming an active region surrounded by the isolation feature, forming a gate stack on the active region, forming a source/drain (S/D) feature on the active region and on a side of the gate stack, thinning down the substrate from the back side such that the isolation feature is exposed, etching the active region to expose the S/D feature from the back side to form a backside trench, and forming a backside via feature landing on the S/D feature and surrounded by the liner layer.
    Type: Grant
    Filed: July 18, 2023
    Date of Patent: March 18, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Li-Zhen Yu, Chia-Hao Chang, Huan-Chieh Su, Lin-Yu Huang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20250089393
    Abstract: Various embodiments of the present application are directed to a narrow band filter with high transmission and an image sensor comprising the narrow band filter. In some embodiments, the filter comprises a first distributed Bragg reflector (DBR), a second DBR, a defect layer between the first and second DBRs, and a plurality of columnar structures. The columnar structures extend through the defect layer and have a refractive index different than a refractive index of the defect layer. The first and second DBRs define a low transmission band, and the defect layer defines a high transmission band dividing the low transmission band. The columnar structures shift the high transmission band towards lower or higher wavelengths depending upon a refractive index of the columnar structures and a fill factor of the columnar structures.
    Type: Application
    Filed: November 22, 2024
    Publication date: March 13, 2025
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Patent number: 12248019
    Abstract: A diode test module and method applicable to the diode test module are provided. A substrate having first conductivity type and an epitaxial layer having second conductivity type on the substrate are formed. A well region having first conductivity type is formed in the epitaxial layer. A first and second heavily doped region having second conductivity type are theoretically formed in the well and connected to a first and second I/O terminal, respectively. Isolation trench is formed there in between for electrical isolation. A monitor cell comprising a third and fourth heavily doped region is provided in a current conduction path between the first and second I/O terminal when inputting an operation voltage. By employing the monitor cell, the invention achieves to determine if the well region is missing by measuring whether a leakage current is generated without additional testing equipment and time for conventional capacitance measurements.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: March 11, 2025
    Assignee: AMAZING MICROELECTRONIC CORP.
    Inventors: Chih-Ting Yeh, Sung Chih Huang, Kun-Hsien Lin, Che-Hao Chuang
  • Patent number: 12249649
    Abstract: A semiconductor device includes a fin-shaped structure on the substrate, a shallow trench isolation (STI) around the fin-shaped structure, a single diffusion break (SDB) structure in the fin-shaped structure for dividing the fin-shaped structure into a first portion and a second portion; a first gate structure on the fin-shaped structure, a second gate structure on the STI, and a third gate structure on the SDB structure. Preferably, a width of the third gate structure is greater than a width of the second gate structure and each of the first gate structure, the second gate structure, and the third gate structure includes a U-shaped high-k dielectric layer, a U-shaped work function metal layer, and a low-resistance metal layer.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: March 11, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Cheng-Han Wu, Hsin-Yu Chen, Chun-Hao Lin, Shou-Wei Hsieh, Chih-Ming Su, Yi-Ren Chen, Yuan-Ting Chuang
  • Publication number: 20250079428
    Abstract: Packaged devices and methods of manufacturing the devices are described herein. The packaged devices may be fabricated using heterogeneous devices and asymmetric dual-side molding on a multi-layered redistribution layer (RDL) structure. The packaged devices may be formed with a heterogeneous three-dimensional (3D) Fan-Out System-in-Package (SiP) structure having small profiles and can be formed using a single carrier substrate.
    Type: Application
    Filed: November 15, 2024
    Publication date: March 6, 2025
    Inventors: Yi-Wen Wu, Po-Yao Chuang, Meng-Liang Lin, Techi Wong, Shih-Ting Hung, Po-Hao Tsai, Shin-Puu Jeng
  • Patent number: 12243823
    Abstract: An integrated circuit includes a substrate at a front side of the integrated circuit. A first gate all around transistor is disposed on the substrate. The first gate all around transistor includes a channel region including at least one semiconductor nanostructure, source/drain regions arranged at opposite sides of the channel region, and a gate electrode. A shallow trench isolation region extends into the integrated circuit from the backside. A backside gate plug extends into the integrated circuit from the backside and contacts the gate electrode of the first gate all around transistor. The backside gate plug laterally contacts the shallow trench isolation region at the backside of the integrated circuit.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: March 4, 2025
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Yuan Chen, Huan-Chieh Su, Cheng-Chi Chuang, Chih-Hao Wang
  • Patent number: 12243781
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a semiconductor fin disposed over a substrate; a metal gate structure disposed over a channel region of the semiconductor fin; a first interlayer dielectric (ILD) layer disposed over a source/drain (S/D) region next to the channel region of the semiconductor fin; and a first conductive feature including a first conductive portion disposed on the metal gate structure and a second conductive portion disposed on the first ILD layer, wherein a top surface of the first conductive portion is below a top surface of the second conductive portion, a first sidewall of the first conductive portion connects a lower portion of a first sidewall of the second conductive portion.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: March 4, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACUTRING CO., LTD.
    Inventors: Cheng-Chi Chuang, Li-Zhen Yu, Yi-Hsun Chiu, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 12243966
    Abstract: A light-emitting device comprises a semiconductor stack emitting a light with a peak wavelength ?; and a light field adjustment layer formed on the semiconductor stack, wherein the light field adjustment layer comprises a plurality of first layers and a plurality of second layers alternately stacked on top of each other, the plurality of first layers each comprises a first optical thickness, and the plurality of second layers each comprises a second optical thickness.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: March 4, 2025
    Assignee: EPISTAR CORPORATION
    Inventors: Heng-Ying Cho, Li-Yu Shen, Chih-Hao Chen, Keng-Lin Chuang
  • Patent number: 12242350
    Abstract: During operation, a controller node, in multiple nodes in a cluster, may provide to the multiple nodes a set of operations associated with an update of controller software for a controller, where at least the controller node implements the controller. Moreover, at least a first node in the multiple nodes may perform the set of operations associated with the update of the controller software. Furthermore, at least a second node in the multiple nodes may monitor the performing of the set of operations by at least the first node. When the performing of the set of operations is completed by at least the first node, the first node may terminate the performing of the set of operations by the multiple nodes. Alternatively, when a failure occurs during the update of the controller software, at least the first node or the second node may automatically recover the multiple nodes.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: March 4, 2025
    Assignee: Ruckus IP Holdings LLC
    Inventors: Hung Fu Chen, Hao Chuang, Chin Hou Chou