Patents by Inventor Hao-Chun Cheng

Hao-Chun Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8466479
    Abstract: Systems and methods are disclosed for fabricating a semiconductor light-emitting diode (LED) device by forming an n-doped gallium nitride (n-GaN) layer on the LED device and roughening the surface of the n-GaN layer to extract light from an interior of the LED device.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: June 18, 2013
    Assignee: SemiLEDs Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Hao-Chun Cheng, Feng-Hsu Fan, Wen-Huang Liu, Chao-Chen Cheng
  • Patent number: 8384088
    Abstract: The invention relates to a vertical light emitting diode (VLED) having an outwardly disposed electrode, the vertical light emitting diode comprises a conductive base, a semiconductor epitaxial structure formed on the conductive base, a passivation layer formed at the periphery of the semiconductor epitaxial structure, and a conductive frame formed on the passivation layer and contacting with the edge of the upper surface of the semiconductor epitaxial structure such that the conductive frame is electrically connected to the semiconductor epitaxial structure.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 26, 2013
    Assignee: Semileds Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Wen-Huang Liu, Hao-Chun Cheng
  • Patent number: 8283652
    Abstract: A vertical light emitting diode (VLED) die includes a metal base; a mirror on the metal base; a p-type semiconductor layer on the reflector layer; a multiple quantum well (MQW) layer on the p-type semiconductor layer configured to emit light; and an n-type semiconductor layer on the multiple quantum well (MQW) layer. The vertical light emitting diode (VLED) die also includes an electrode and an electrode frame on the n-type semiconductor layer, and an organic or inorganic material contained within the electrode frame. The electrode and the electrode frame are configured to provide a high current capacity and to spread current from the outer periphery to the center of the n-type semiconductor layer.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: October 9, 2012
    Assignee: SemiLEDs Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Feng-Hsu Fan, Hao-Chun Cheng, Trung Tri Doan
  • Publication number: 20120146083
    Abstract: Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current-guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a substrate) may be provided. For some embodiments, both a current-guiding structure and second current path may be provided.
    Type: Application
    Filed: February 21, 2012
    Publication date: June 14, 2012
    Inventors: Wen-Huang LIU, Chen-Fu CHU, Jiunn-Yi CHU, Chao-Chen CHENG, Hao-Chun CHENG, Feng-Hsu FAN, Yuan-Hsiao CHANG
  • Publication number: 20120097985
    Abstract: A light emitting diode (LED) package includes a substrate, a light emitting diode (LED) die mounted to the substrate, a frame on the substrate, a wire bonded to the light emitting diode (LED) die and to the substrate, and a transparent dome configured as a lens encapsulating the light emitting diode (LED) die. A method for fabricating a light emitting diode (LED) package includes the steps of: providing a substrate; forming a frame on the substrate; attaching a light emitting diode (LED) die to the substrate; wire bonding a wire to the light emitting diode (LED) die and to the substrate; and dispensing a transparent encapsulation material on the frame configured to form a transparent dome and lens for encapsulating the light emitting diode (LED) die.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 26, 2012
    Inventors: Wen-Huang Liu, Chung-Che Dan, Yuan-Hsiao Chang, Hung-Jen Kao, Chen-Fu Chu, Hao-Chun Cheng
  • Patent number: 8148733
    Abstract: Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a metal alloy substrate) may be provided. For some embodiments, both a current guiding structure and second current path may be provided.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: April 3, 2012
    Assignee: Semileds Optoelectronics Co., Ltd.
    Inventors: Wen-Huang Liu, Chen-Fu Chu, Jiunn-Yi Chu, Chao-Chen Cheng, Hao-Chun Cheng, Feng-Hsu Fan, Yuan-Hsiao Chang
  • Publication number: 20120074384
    Abstract: Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non-(or low) thermally conductive and/or non-(or low) electrically conductive carrier substrate that has been removed.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 29, 2012
    Inventors: FENG-HSU FAN, Trung Tri Doan, Chuong Ann Tran, Chen-Fu Chu, Chao-Chen Cheng, Jiunn-Yl Chu, Wen-Huang Liu, Hao-Chun Cheng, Jul-Kang Yen
  • Patent number: 8143112
    Abstract: Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: March 27, 2012
    Assignee: Semileds Optoelectronics Co., Ltd.
    Inventors: Trung Tri Doan, Chuong Anh Tran, Chen-Fu Chu, Chao-Chen Cheng, Jiunn-Yi Chu, Wen-Huang Liu, Hao-Chun Cheng, Feng-Hsu Fan, Jui-Kang Yen
  • Patent number: 8124454
    Abstract: Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: February 28, 2012
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Trung Tri Doan, Chuong Anh Tran, Chao-Chen Cheng, Jiunn-Yi Chu, Wen-Huang Liu, Hao-Chun Cheng, Feng-Hsu Fan, Jui-Kang Yen
  • Publication number: 20120025167
    Abstract: A vertical light emitting diode (VLED) die includes a metal base; a mirror on the metal base; a p-type semiconductor layer on the reflector layer; a multiple quantum well (MQW) layer on the p-type semiconductor layer configured to emit light; and an n-type semiconductor layer on the multiple quantum well (MQW) layer. The vertical light emitting diode (VLED) die also includes an electrode and an electrode frame on the n-type semiconductor layer, and an organic or inorganic material contained within the electrode frame. The electrode and the electrode frame are configured to provide a high current capacity and to spread current from the outer periphery to the center of the n-type semiconductor layer.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Inventors: Chen-Fu Chu, Feng-Hsu Fan, Hao-Chun Cheng, Trung Tri Doan
  • Publication number: 20110316034
    Abstract: A light emitting diode includes a thermal conductive substrate having at least one electrical isolation layer configured to provide vertical electrical isolation and a heat transfer path through the substrate from a front side (first side) to a back side (second side) thereof. The light emitting diode includes an anode having a through interconnect, and a cathode having a through interconnect, which are arranged side by side on the substrate. The light emitting diode also includes a LED chip mounted to the substrate between the anode and the cathode.
    Type: Application
    Filed: June 26, 2010
    Publication date: December 29, 2011
    Inventors: Trung Tri Doan, Chen-Fu Chu, Wen-Huang Liu, Feng-Hsu Fan, Hao-Chun Cheng, Fu-Hsien Wang
  • Publication number: 20110316039
    Abstract: Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a metal alloy substrate) may be provided. For some embodiments, both a current guiding structure and second current path may be provided.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 29, 2011
    Inventors: WEN-HUANG LIU, Chen-Fu Chu, Jiunn-Yi Chu, Chao-Chen Cheng, Hao-Chun Cheng, Feng-Hsu Fan, Yuan-Hsiao Chang
  • Publication number: 20110217799
    Abstract: A method for the separation of multiple dies during semiconductor fabrication is described. On an upper surface of a semiconductor wafer containing multiple dies, metal layers are deposited everywhere except where a block of stop electroplating material exists. The stop electroplating material is obliterated, and a barrier layer is formed above the entire remaining structure. A sacrificial metal element is added above the barrier layer, and then the substrate is removed. After the semiconductor material between the individual dies is eradicated, any desired bonding pads and patterned circuitry are added to the semiconductor surface opposite the sacrificial metal element, a passivation layer is added to this surface, and then the sacrificial metal element is removed. Tape is added to the now exposed barrier layer, the passivation layer is removed, the resulting structure is flipped over, and the tape is expanded to separate the individual dies.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 8, 2011
    Inventors: Chen-Fu Chu, Trung Tri Doan, Hao-Chun Cheng, Feng-Hsu Fan, Fu-Hsien Wang
  • Patent number: 8003994
    Abstract: Techniques for controlling current flow in semiconductor devices, such as LEDs are provided. For some embodiments, a current guiding structure may be provided including adjacent high and low contact areas. For some embodiments, a second current path (in addition to a current path between an n-contact pad and a metal alloy substrate) may be provided. For some embodiments, both a current guiding structure and second current path may be provided.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: August 23, 2011
    Assignee: SemiLEDs Optoelectronics Co., Ltd
    Inventors: Wen-Huang Liu, Chen-Fu Chu, Jiunn-Yi Chu, Chao-Chen Cheng, Hao-Chun Cheng, Feng-Hsu Fan, Yuan-Hsiao Chang
  • Patent number: 7968379
    Abstract: A method for the separation of multiple dies during semiconductor fabrication is described. On an upper surface of a semiconductor wafer containing multiple dies, metal layers are deposited everywhere except where a block of stop electroplating material exists. The stop electroplating material is obliterated, and a barrier layer is formed above the entire remaining structure. A sacrificial metal element is added above the barrier layer, and then the substrate is removed. After the semiconductor material between the individual dies is eradicated, any desired bonding pads and patterned circuitry are added to the semiconductor surface opposite the sacrificial metal element, a passivation layer is added to this surface, and then the sacrificial metal element is removed. Tape is added to the now exposed barrier layer, the passivation layer is removed, the resulting structure is flipped over, and the tape is expanded to separate the individual dies.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: June 28, 2011
    Assignee: SemiLEDs Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Trung Tri Doan, Hao-Chun Cheng, Feng-Hsu Fan, Fu-Hsien Wang
  • Publication number: 20110108851
    Abstract: The invention relates to a vertical light emitting diode (VLED) having an outwardly disposed electrode, the vertical light emitting diode comprises a conductive base, a semiconductor epitaxial structure formed on the conductive base, a passivation layer formed at the periphery of the semiconductor epitaxial structure, and a conductive frame formed on the passivation layer and contacting with the edge of the upper surface of the semiconductor epitaxial structure such that the conductive frame is electrically connected to the semiconductor epitaxial structure.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 12, 2011
    Applicant: Semileds Optoelectronics Co., Ltd., a Taiwan Corporation
    Inventors: Chen-Fu Chu, Wen-Huang Liu, Hao-Chun Cheng
  • Publication number: 20110101400
    Abstract: Systems and methods are disclosed for fabricating a semiconductor light-emitting diode (LED) device by forming an n-doped gallium nitride (n-GaN) layer on the LED device and roughening the surface of the n-GaN layer to extract light from an interior of the LED device.
    Type: Application
    Filed: January 7, 2011
    Publication date: May 5, 2011
    Inventors: CHEN-FU CHU, Hao-Chun Cheng, Feng-Hsu Fan, Wen-Huang Liu, Chao-Chen Cheng
  • Patent number: 7897420
    Abstract: Systems and methods are disclosed for fabricating a semiconductor light-emitting diode (LED) device by forming an n-doped gallium nitride (n-GaN) layer on the LED device and roughening the surface of the n-GaN layer to extract light from an interior of the LED device.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 1, 2011
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Hao-Chun Cheng, Feng-Hsu Fan, Wen-Huang Liu, Chao-Chen Cheng
  • Patent number: D684940
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: June 25, 2013
    Assignee: SemiLEDs Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Chao-Chen Cheng, Hao-Chun Cheng
  • Patent number: D684941
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: June 25, 2013
    Assignee: Semileds Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Hao-Chun Cheng