Patents by Inventor Hao-Hsun Chang

Hao-Hsun Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210028507
    Abstract: Provided is a battery charging system comprising (a) at least one charging circuit to charge at least one rechargeable battery cell; (b) a heat source to provide heat that is transported through a heat spreader element, implemented fully or partially inside said at least one battery cell, to heat up the battery cell to a desired temperature Tc before or during battery charging; and (c) cooling means in thermal contact with the heat spreader element configured to enable transporting internal heat of the battery cell through the heat spreader element to the cooling means when the battery cell is discharged. Charging the battery at Tc enables completion of the battery in less than 15 minutes, typically less than 10 minutes, and more typically less than 5 minutes without adversely impacting the battery structure and performance.
    Type: Application
    Filed: July 24, 2019
    Publication date: January 28, 2021
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yu-Sheng Su, Hao-Hsun Chang, Yu-Ming Chen, Bor Z. Jang
  • Publication number: 20210028509
    Abstract: Provided is a rechargeable battery comprising an anode, a cathode, an electrolyte disposed between the anode and the cathode, a protective housing that at least partially encloses the anode, the cathode and the electrolyte, a heat-spreader element disposed at least partially inside the protective housing and configured to receive heat from an external heat source at a desired heating temperature Th to heat up the battery to a desired temperature Tc for battery charging. Preferably, the heat-spreader element does not receive an electrical current from an external circuit (e.g. battery charger) to generate heat for resistance heating of the battery. Charging the battery at Tc enables completion of the battery in less than 15 minutes, typically less than 10 minutes, and more typically less than 5 minutes without adversely impacting the battery structure and performance.
    Type: Application
    Filed: July 23, 2019
    Publication date: January 28, 2021
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yu-Sheng Su, Yu-Ming Chen, Hao-Hsun Chang, Bor Z. Jang
  • Publication number: 20210021001
    Abstract: Provided is a rechargeable battery system comprising at least a battery cell and an external cooling means, wherein the battery cell comprises an anode, a cathode, an electrolyte disposed between the anode and the cathode, a protective housing that at least partially encloses the anode, the cathode and the electrolyte, and at least one heat-spreader element disposed partially or entirely inside the protective housing and wherein the external cooling means is in thermal contact with the heat spreader element configured to enable transporting internal heat of the battery through the heat spreader element to the external cooling means. Also provided is a method of operating a rechargeable battery system, the method comprising implementing a heat spreader element in one or each of a plurality of battery cells and bringing the heat spreader element in thermal contact with one or a plurality of external cooling means.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Applicant: Nanotek Instruments, Inc.
    Inventors: Hao-Hsun Chang, Yu-Ming Chen, Yu-Sheng Su, Bor Z. Jang
  • Publication number: 20210021003
    Abstract: Provided is a rechargeable battery comprising an anode, a cathode, an electrolyte disposed between the anode and the cathode, a protective housing that at least partially encloses the anode, the cathode and the electrolyte, a heat-spreader element disposed at least partially inside the protective housing and configured to receive heat from an external heat source at a desired heating temperature Th to heat up the battery to a desired temperature Tc for battery charging. Preferably, the heat-spreader element does not receive an electrical current from an external circuit (e.g. battery charger) to generate heat for resistance heating of the battery. Charging the battery at Tc enables completion of the battery in less than 15 minutes, typically less than 10 minutes, and more typically less than 5 minutes without adversely impacting the battery structure and performance.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 21, 2021
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yu-Ming Chen, Hao-Hsun Chang, Yu-Sheng Su, Bor Z. Jang
  • Publication number: 20200266426
    Abstract: Provided is a simple, fast, scalable, and environmentally benign method of producing graphene-embraced particles of a battery electrode active material, comprising: a) mixing graphitic material particles and multiple particles of a milling media to form a mixture in an impacting chamber of an energy impacting apparatus; b) operating the energy impacting apparatus with a frequency and an intensity for a length of time sufficient for transferring graphene sheets from the graphitic material to surfaces of milling media particles to produce graphene-embraced milling media particles; c) mixing particles of an active material with graphene-embraced milling media particles in an impacting chamber of an energy impacting apparatus; d) operating the energy impacting apparatus for transferring graphene sheets from the graphene-embraced milling media particles to surfaces of active material particles to produce graphene-embraced electrode active material particles; and e) recovering these graphene-embraced active materia
    Type: Application
    Filed: February 15, 2019
    Publication date: August 20, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Hao-Hsun Chang, Bor Z. Jang
  • Patent number: 10734635
    Abstract: Provided is graphene-embraced particulate for use as a lithium-ion battery anode active material, wherein the particulate comprises primary particle(s) of an anode active material and multiple sheets of a first graphene material overlapped together to embrace or encapsulate the primary particle(s) and wherein a single or a plurality of graphene-encapsulated primary particles, along with an optional conductive additive, are further embraced or encapsulated by multiple sheets of a second graphene material, wherein the first graphene and the second graphene material is each in an amount from 0.01% to 20% by weight and the optional conductive additive is in an amount from 0% to 50% by weight, all based on the total weight of the particulate. Also provided are an anode and a battery comprising multiple graphene-embraced particulates.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: August 4, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Hao-Hsun Chang, Yu-Sheng Su, Bor Z. Jang
  • Publication number: 20200039828
    Abstract: A method of producing a graphene suspension, comprising: (a) mixing multiple particles of a graphitic material and multiple particles of a solid carrier material to form a mixture in an impacting chamber of an energy impacting apparatus; (b) operating the energy impacting apparatus with a frequency and an intensity for a length of time sufficient for peeling off graphene sheets from the graphitic material and transferring the graphene sheets to surfaces of the carrier material particles to produce graphene-coated carrier particles inside the impacting chamber; and (c) dispersing the graphene-coated carrier particles in a liquid medium and separating the graphene sheets from the carrier material particles using ultrasonication or mechanical shearing means and removing the carrier material from the liquid medium to produce the graphene suspension. The process is fast (1-4 hours as opposed to 5-120 hours of conventional processes), environmentally benign, cost effective, and highly scalable.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 6, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Hao-Hsun Chang, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20190372093
    Abstract: Provided is graphene-embraced particulate for use as a lithium-ion battery anode active material, wherein the particulate comprises primary particle(s) of an anode active material and multiple sheets of a first graphene material overlapped together to embrace or encapsulate the primary particle(s) and wherein a single or a plurality of graphene-encapsulated primary particles, along with an optional conductive additive, are further embraced or encapsulated by multiple sheets of a second graphene material, wherein the first graphene and the second graphene material is each in an amount from 0.01% to 20% by weight and the optional conductive additive is in an amount from 0% to 50% by weight, all based on the total weight of the particulate. Also provided are an anode and a battery comprising multiple graphene-embraced particulates.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 5, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Hao-Hsun Chang, Yu-Sheng Su, Bor Z. Jang
  • Patent number: 9196923
    Abstract: The present invention provides an electrolyte solution including an ionic liquid having the structure of formula (I): wherein R1 is C1-C6alkyl, R2 is C2-C7alkyl, A? is defined in the specification. The electrolyte solution of the present invention has high conductivity and high thermal stability.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: November 24, 2015
    Inventors: Hao-Hsun Chang, Fu-Ming Wang, Jung-Jung Liu