Patents by Inventor Hao-Yi Tsai
Hao-Yi Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12360321Abstract: A semiconductor device includes an optical connector element and an optical coupler. The optical connector element includes a base structure, a first polymer via and a cladding layer. The base structure has a first surface and a second surface opposite to the first surface. The first polymer via passes through the base structure from the first surface to the second surface. The cladding layer is surrounding the first polymer via, wherein a refractive index of the cladding layer is different than a refractive index of the first polymer via. The optical coupler is disposed over the optical connector element, wherein the optical coupler receives optical signals from the first polymer via.Type: GrantFiled: February 17, 2022Date of Patent: July 15, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chung-Ming Weng, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Yu-Hao Chen
-
Patent number: 12362270Abstract: A package structure includes a first redistribution layer, a semiconductor die, and through vias. The first redistribution layer includes dielectric layers, first conductive patterns, and second conductive patterns. The dielectric layers are located in a core region and a peripheral region of the first redistribution layer. The first conductive patterns are embedded in the dielectric layers in the core region, wherein the first conductive patterns are arranged in the core region with a pattern density that gradually increases or decreases from a center of the core region to a boundary of the core region. The second conductive patterns are embedded in the dielectric layers in the peripheral region. The semiconductor die is disposed on the core region over the first conductive patterns. The through vias are disposed on the peripheral region and electrically connected to the second conductive patterns.Type: GrantFiled: February 23, 2022Date of Patent: July 15, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kris Lipu Chuang, Tzu-Sung Huang, Chih-Wei Lin, Yu-fu Chen, Hsin-Yu Pan, Hao-Yi Tsai
-
Patent number: 12362329Abstract: A semiconductor package including a first semiconductor die, a second semiconductor die, a first insulating encapsulation, a dielectric layer structure, a conductor structure and a second insulating encapsulation is provided. The first semiconductor die includes a first semiconductor substrate and a through substrate via (TSV) extending from a first side to a second side of the semiconductor substrate. The second semiconductor die is disposed on the first side of the semiconductor substrate. The first insulating encapsulation on the second semiconductor die encapsulates the first semiconductor die. A terminal of the TSV is coplanar with a surface of the first insulating encapsulation. The dielectric layer structure covers the first semiconductor die and the first insulating encapsulation. The conductor structure extends through the dielectric layer structure and contacts with the through substrate via.Type: GrantFiled: February 1, 2024Date of Patent: July 15, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Hao-Yi Tsai, Cheng-Chieh Hsieh, Tsung-Hsien Chiang, Hui-Chun Chiang, Tzu-Sung Huang, Ming-Hung Tseng, Kris Lipu Chuang, Chung-Ming Weng, Tsung-Yuan Yu, Tzuan-Horng Liu
-
Patent number: 12362274Abstract: A package structure includes a thermal dissipation structure including a substrate, a first encapsulant laterally covering the substrate, a die disposed on the substrate and including a sensing region, a second encapsulant laterally covering the die, and a redistribution structure disposed on the die and the second encapsulant. An outer sidewall of the second encapsulant is laterally offset from an outer sidewall of the first encapsulant. The die is electrically coupled to the substrate through the redistribution structure, and the redistribution structure includes a hollow region overlying the sensing region of the die.Type: GrantFiled: February 20, 2024Date of Patent: July 15, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Hsuan Tai, Hao-Yi Tsai, Tsung-Hsien Chiang, Yu-Chih Huang, Chia-Hung Liu, Ban-Li Wu, Ying-Cheng Tseng, Po-Chun Lin
-
Patent number: 12362283Abstract: A semiconductor device includes a stacked structure, first conductive terminals and second conductive terminals. The stacked structure includes a first semiconductor component having a first area and a second semiconductor component stacked on the first semiconductor component and having a second area smaller than the first area, wherein an extending direction of the first area and an extending direction of the second area are perpendicular to a stacking direction of the first semiconductor component and the second semiconductor component. The first conductive terminals are located on the stacked structure, electrically coupled to the first semiconductor component and aside of the second semiconductor component. The second conductive terminals are located on the stacked structure and electrically coupled to the second semiconductor component.Type: GrantFiled: June 30, 2022Date of Patent: July 15, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ming-Hung Tseng, Cheng-Chieh Hsieh, Hao-Yi Tsai
-
Publication number: 20250219024Abstract: A device includes a first redistribution structure comprising a first conductive line and a second conductive line. An integrated circuit die is attached to the first redistribution structure. A first via is coupled to the first conductive line on a first side, and a first conductive connector is coupled to the first conductive line on a second side opposite the first side. A second via is coupled to the second conductive line on the first side, and a second conductive connector is coupled to the second conductive line on the second side. The first via directly contacts the first conductive line without directly contacting the first conductive connector. The second via directly contacts the second conductive line and directly contacts the second conductive connector.Type: ApplicationFiled: March 17, 2025Publication date: July 3, 2025Inventors: Chen-Hua Yu, Yen-Liang Lin, Tzu-Sung Huang, Hao-Yi Tsai, Ming Hung Tseng, Ting Hao Kuo
-
Publication number: 20250210461Abstract: A method includes forming a die, which includes forming a first metal pillar on a first side of a first semiconductor substrate of the die, polishing the first semiconductor substrate of the die to reveal a first through-via in the first semiconductor substrate, and forming a second metal pillar on a second side of the die. The first side and the second side are on opposite sides of the first semiconductor substrate. The method further includes encapsulating the die in an encapsulant, forming a first conductive feature on the first side of the first semiconductor substrate and electrically connecting to the first metal pillar, and forming a second conductive feature on the second side of the first semiconductor substrate and electrically connecting to the second metal pillar.Type: ApplicationFiled: March 15, 2024Publication date: June 26, 2025Inventors: Yao-Jen Chang, Chung-Yu Lu, Ping-Kang Huang, Sao-Ling Chiu, Hsien-Pin Hu, Hao-Yi Tsai, Shang-Yun Hou
-
Patent number: 12334434Abstract: A package structure includes a thermal dissipation structure, a first encapsulant, a die, a through integrated fan-out via (TIV), a second encapsulant, and a redistribution layer (RDL) structure. The thermal dissipation structure includes a substrate and a first conductive pad disposed over the substrate. The first encapsulant laterally encapsulates the thermal dissipation structure. The die is disposed on the thermal dissipation structure. The TIV lands on the first conductive pad of the thermal dissipation structure and is laterally aside the die. The second encapsulant laterally encapsulates the die and the TIV. The RDL structure is disposed on the die and the second encapsulant.Type: GrantFiled: August 2, 2023Date of Patent: June 17, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Hsuan Tai, Hao-Yi Tsai, Tsung-Hsien Chiang, Yu-Chih Huang, Chia-Hung Liu, Ban-Li Wu, Ying-Cheng Tseng, Po-Chun Lin
-
Publication number: 20250191990Abstract: A manufacturing method of a semiconductor package includes the following steps. A semiconductor device is attached to a carrier by an adhesive layer on the carrier. The semiconductor device is encapsulated by an encapsulating material. A redistribution structure is provided over the semiconductor device and the encapsulating material. The carrier is removed. The adhesive layer is partially removed by anisotropic etching process to form an adhesive residue, wherein the adhesive residue at least reveals a back surface of the semiconductor device and at least partially covers the encapsulating material.Type: ApplicationFiled: February 24, 2025Publication date: June 12, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tzu-Sung Huang, Ming-Hung Tseng, Yen-Liang Lin, Ban-Li Wu, Hsiu-Jen Lin, Teng-Yuan Lo, Hao-Yi Tsai
-
Publication number: 20250183245Abstract: Manufacturing method of semiconductor package includes following steps. Bottom package is provided. The bottom package includes a die and a redistribution structure electrically connected to die. A first top package and a second top package are disposed on a surface of the redistribution structure further away from the die. An underfill is formed into the space between the first and second top packages and between the first and second top packages and the bottom package. The underfill covers at least a side surface of the first top package and a side surface of the second top package. A hole is opened in the underfill within an area overlapping with the die between the side surface of the first top package and the side surface of the second top package. A thermally conductive block is formed in the hole by filling the hole with a thermally conductive material.Type: ApplicationFiled: February 6, 2025Publication date: June 5, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shih-Wei Chen, Chih-Hua Chen, Hsin-Yu Pan, Hao-Yi Tsai, Lipu Kris Chuang, Tin-Hao Kuo
-
Patent number: 12322696Abstract: A method of making a semiconductor device, includes: forming a first molding layer on a substrate; forming a first plurality of vias in the first molding layer; forming a first conductive line over the first molding layer, wherein the first conductive line is laterally disposed over the first molding layer and a first end of the conductive line aligns with and is electrically coupled to a first via of the first plurality of vias; forming a second molding layer above the first molding layer; and forming a second plurality of vias in the second molding layer, wherein a second via of the second plurality of vias aligns with and is electrically coupled to a second end of the conductive line, and wherein the second plurality of vias, the conductive line, and the first plurality of vias are electrically coupled to one another.Type: GrantFiled: August 9, 2023Date of Patent: June 3, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Shih-Wei Liang, Hung-Yi Kuo, Hao-Yi Tsai, Ming-Hung Tseng, Hsien-Ming Tu
-
Patent number: 12322706Abstract: A chip package including a first semiconductor die, a support structure and a second semiconductor die is provided. The first semiconductor die includes a first dielectric layer and a plurality of conductive vias, the first dielectric layer includes a first region and a second region, the conductive vias is embedded in the first region of the first dielectric layer; a plurality of conductive pillars is disposed on and electrically connected to the conductive vias. The second semiconductor die is stacked over the support structure and the second region of the first dielectric layer; and an insulating encapsulant encapsulates the first semiconductor die, the second semiconductor die, the support structure and the conductive pillars, wherein the second semiconductor die is electrically connected to the first semiconductor die through the conductive pillars.Type: GrantFiled: May 19, 2023Date of Patent: June 3, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kuo-Lung Pan, Hao-Yi Tsai, Tin-Hao Kuo
-
Publication number: 20250166895Abstract: A system and method for providing and programming a programmable inductor is provided. The structure of the programmable inductor includes multiple turns, with programmable interconnects incorporated at various points around the turns to provide a desired isolation of the turns during programming. In an embodiment the programming may be controlled using the size of the vias, the number of vias, or the shapes of the interconnects.Type: ApplicationFiled: January 17, 2025Publication date: May 22, 2025Inventors: Chen-Hua Yu, Mirng-Ji Lii, Hao-Yi Tsai, Hsien-Wei Chen, Hung-Yi Kuo, Nien-Fang Wu
-
Patent number: 12300618Abstract: A semiconductor device includes a first chip package, a heat dissipation structure and an adapter. The first chip package includes a semiconductor die laterally encapsulated by an insulating encapsulant, the semiconductor die has an active surface and a back surface opposite to the active surface. The heat dissipation structure is connected to the chip package. The adapter is disposed over the first chip package and electrically connected to the semiconductor die.Type: GrantFiled: March 17, 2022Date of Patent: May 13, 2025Assignee: Taiwna Semiconductor Manufacturing Company, Ltd.Inventors: Po-Yuan Teng, Hung-Yi Kuo, Hao-Yi Tsai, Tin-Hao Kuo, Yu-Chia Lai, Shih-Wei Chen
-
Patent number: 12300571Abstract: In an embodiment, a device includes: a package component including integrated circuit dies, an encapsulant around the integrated circuit dies, a redistribution structure over the encapsulant and the integrated circuit dies, and sockets over the redistribution structure; a mechanical brace physically coupled to the sockets, the mechanical brace having openings, each one of the openings exposing a respective one of the sockets; a thermal module physically and thermally coupled to the encapsulant and the integrated circuit dies; and bolts extending through the thermal module, the mechanical brace, and the package component.Type: GrantFiled: July 27, 2022Date of Patent: May 13, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shu-Rong Chun, Kuo-Lung Pan, Pei-Hsuan Lee, Chien Ling Hwang, Yu-Chia Lai, Tin-Hao Kuo, Hao-Yi Tsai, Chen-Hua Yu
-
Patent number: 12288729Abstract: In an embodiment, a device includes: an integrated circuit die; an encapsulant at least partially surrounding the integrated circuit die, the encapsulant including fillers having an average diameter; a through via extending through the encapsulant, the through via having a lower portion of a constant width and an upper portion of a continuously decreasing width, a thickness of the upper portion being greater than the average diameter of the fillers; and a redistribution structure including: a dielectric layer on the through via, the encapsulant, and the integrated circuit die; and a metallization pattern having a via portion extending through the dielectric layer and a line portion extending along the dielectric layer, the metallization pattern being electrically coupled to the through via and the integrated circuit die.Type: GrantFiled: February 7, 2024Date of Patent: April 29, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tzu-Sung Huang, Ming Hung Tseng, Yen-Liang Lin, Hao-Yi Tsai, Chi-Ming Tsai, Chung-Shi Liu, Chih-Wei Lin, Ming-Che Ho
-
Publication number: 20250123458Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.Type: ApplicationFiled: December 18, 2024Publication date: April 17, 2025Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
-
Publication number: 20250125224Abstract: In an embodiment, a device includes: an interposer including: a back-side redistribution structure; an interconnection die over the back-side redistribution structure, the interconnection die including a substrate, a through-substrate via protruding from the substrate, and an isolation layer around the through-substrate via; a first encapsulant around the interconnection die, a surface of the first encapsulant being substantially coplanar with a surface of the isolation layer and a surface of the through-substrate via; and a front-side redistribution structure over the first encapsulant, the front-side redistribution structure including a first conductive via that physically contacts the through-substrate via, the isolation layer separating the first conductive via from the substrate.Type: ApplicationFiled: February 15, 2024Publication date: April 17, 2025Inventors: Yao-Cheng Wu, Hua-Kai Lin, Hao-Cheng Hou, Tsung-Ding Wang, Hao-Yi Tsai
-
Patent number: 12278208Abstract: A method of fabricating a semiconductor structure includes the following steps. A semiconductor wafer is provided. A plurality of first surface mount components and a plurality of second surface mount components are bonded onto the semiconductor wafer, wherein a first portion of each of the second surface mount components is overhanging a periphery of the semiconductor wafer. A first barrier structure is formed in between the second surface mount components and the semiconductor wafer. An underfill structure is formed under a second portion of each of the second surface mount components, wherein the first barrier structure blocks the spreading of the underfill structure from the second portion to the first portion.Type: GrantFiled: November 1, 2023Date of Patent: April 15, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Mao-Yen Chang, Chih-Wei Lin, Hao-Yi Tsai, Kuo-Lung Pan, Chun-Cheng Lin, Tin-Hao Kuo, Yu-Chia Lai, Chih-Hsuan Tai
-
Publication number: 20250110291Abstract: Provided are a package structure and a method of forming the same. The package structure includes a bottom package having a first sidewall and a second sidewall opposite to each other; a hybrid path layer disposed on the bottom package, wherein the hybrid path layer comprises an optical path layer and an electrical path layer, and at least one optical path of the optical path layer extends from the first sidewall of the bottom package beyond a center of the bottom package; and a plurality of dies bonded onto the hybrid path layer.Type: ApplicationFiled: October 2, 2023Publication date: April 3, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chung-Ming Weng, Yu-Hao Chen, Hao-Yi Tsai, An-Jhih Su, Tzuan-Horng Liu, Po-Yuan Teng, Tsung-Yuan Yu, Che-Hsiang Hsu