Patents by Inventor Hao Yi

Hao Yi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11742254
    Abstract: In an embodiment, a device includes: a sensor die having a first surface and a second surface opposite the first surface, the sensor die having an input/output region and a first sensing region at the first surface; an encapsulant at least laterally encapsulating the sensor die; a conductive via extending through the encapsulant; and a front-side redistribution structure on the first surface of the sensor die, the front-side redistribution structure being connected to the conductive via and the sensor die, the front-side redistribution structure covering the input/output region of the sensor die, the front-side redistribution structure having a first opening exposing the first sensing region of the sensor die.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Hsien Chiang, Yu-Chih Huang, Ting-Ting Kuo, Chih-Hsuan Tai, Ban-Li Wu, Ying-Cheng Tseng, Chi-Hui Lai, Chiahung Liu, Hao-Yi Tsai, Chung-Shi Liu, Chen-Hua Yu
  • Patent number: 11741737
    Abstract: A package includes a sensor die, and an encapsulating material encapsulating the sensor die therein. A top surface of the encapsulating material is substantially coplanar with or higher than a top surface of the sensor die. A plurality of sensing electrodes is higher than the sensor die and the encapsulating material. The plurality of sensing electrodes is arranged as a plurality of rows and columns, and the plurality of sensing electrodes is electrically coupled to the sensor die. A dielectric layer covers the plurality of sensing electrodes.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Chih-Hua Chen, Yu-Feng Chen, Chung-Shi Liu, Chen-Hua Yu, Hao-Yi Tsai, Yu-Chih Huang
  • Publication number: 20230266528
    Abstract: An integrated circuit package and a method of forming the same are provided. The integrated circuit package includes a photonic integrated circuit die. The photonic integrated circuit die includes an optical coupler. The integrated circuit package further includes an encapsulant encapsulating the photonic integrated circuit die, a first redistribution structure over the photonic integrated circuit die and the encapsulant, and an opening extending through the first redistribution structure and exposing the optical coupler.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 24, 2023
    Inventors: Chih-Hsuan Tai, Chung-Ming Weng, Hung-Yi Kuo, Cheng-Chieh Hsieh, Hao-Yi Tsai, Chung-Shi Liu, Chen-Hua Yu
  • Publication number: 20230268260
    Abstract: A package structure includes a first redistribution layer, a semiconductor die, and through vias. The first redistribution layer includes dielectric layers, first conductive patterns, and second conductive patterns. The dielectric layers are located in a core region and a peripheral region of the first redistribution layer. The first conductive patterns are embedded in the dielectric layers in the core region, wherein the first conductive patterns are arranged in the core region with a pattern density that gradually increases or decreases from a center of the core region to a boundary of the core region. The second conductive patterns are embedded in the dielectric layers in the peripheral region. The semiconductor die is disposed on the core region over the first conductive patterns. The through vias are disposed on the peripheral region and electrically connected to the second conductive patterns.
    Type: Application
    Filed: February 23, 2022
    Publication date: August 24, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kris Lipu Chuang, Tzu-Sung Huang, Chih-Wei Lin, Yu-fu Chen, Hsin-Yu Pan, Hao-Yi Tsai
  • Patent number: 11735518
    Abstract: A method of making a semiconductor device, includes: forming a first molding layer on a substrate; forming a first plurality of vias in the first molding layer; forming a first conductive line over the first molding layer, wherein the first conductive line is laterally disposed over the first molding layer and a first end of the conductive line aligns with and is electrically coupled to a first via of the first plurality of vias; forming a second molding layer above the first molding layer; and forming a second plurality of vias in the second molding layer, wherein a second via of the second plurality of vias aligns with and is electrically coupled to a second end of the conductive line, and wherein the second plurality of vias, the conductive line, and the first plurality of vias are electrically coupled to one another.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: August 22, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Wei Liang, Hung-Yi Kuo, Hao-Yi Tsai, Ming-Hung Tseng, Hsien-Ming Tu
  • Publication number: 20230258881
    Abstract: A semiconductor device includes an optical connector element and an optical coupler. The optical connector element includes a base structure, a first polymer via and a cladding layer. The base structure has a first surface and a second surface opposite to the first surface. The first polymer via passes through the base structure from the first surface to the second surface. The cladding layer is surrounding the first polymer via, wherein a refractive index of the cladding layer is different than a refractive index of the first polymer via. The optical coupler is disposed over the optical connector element, wherein the optical coupler receives optical signals from the first polymer via.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 17, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Yu-Hao Chen
  • Publication number: 20230260915
    Abstract: A semiconductor structure includes a first die, a first encapsulant, a second die and a second encapsulant. The first die includes a first dielectric layer and first conductive pads in the first dielectric layer. The first encapsulant laterally encapsulates and is in direct contact with the first dielectric layer of the first die. The second die includes a second dielectric layer and second conductive pads in the second dielectric layer. The second encapsulant laterally encapsulates and is in direct contact with the second dielectric layer of the second die. The first conductive pads of the first die are in physical contact with a first portion of the second conductive pads of the second die.
    Type: Application
    Filed: April 20, 2023
    Publication date: August 17, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Yi Tsai, Tzuan-Horng Liu, Ting Hao Kuo
  • Publication number: 20230260126
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing fundus images using fundus image processing machine learning models. One of the methods includes obtaining a model input comprising one or more fundus images, each fundus image being an image of a fundus of an eye of a patient; processing the model input using a fundus image processing machine learning model, wherein the fundus image processing machine learning model is configured to process the model input comprising the one or more fundus image to generate a model output; and processing the model output to generate health analysis data.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Inventors: Lily Hao Yi Peng, Dale R. Webster, Philip Charles Nelson, Varun Gulshan, Marc Adlai Coram, Martin Christian Stumpe, Derek Janme Wu, Arunachalam Narayanaswamy, Avinash Vaidyanathan Varadarajan, Katharine Blumer, Yun Liu, Ryan Poplin
  • Patent number: 11727714
    Abstract: A fingerprint sensor package and method are provided. Embodiments include a sensor and a sensor surface material encapsulated within the fingerprint sensor package. An array of electrodes of the sensor are electrically connected using through vias that are located either in the sensor, in connection blocks separated from the sensor, or through connection blocks, or else connected through other connections such as wire bonds. A high voltage die is attached in order to increase the sensitivity of the fingerprint sensor.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Chih Huang, Chih-Hua Chen, Yu-Jen Cheng, Chih-Wei Lin, Yu-Feng Chen, Hao-Yi Tsai, Chung-Shi Liu, Chen-Hua Yu
  • Publication number: 20230253384
    Abstract: A semiconductor package includes an integrated passive device (IPD) including one or more passive devices over a first substrate; and metallization layers over and electrically coupled to the one or more passive devices, where a topmost metallization layer of the metallization layers includes a first plurality of conductive patterns; and a second plurality of conductive patterns interleaved with the first plurality of conductive patterns. The IPD also includes a first under bump metallization (UBM) structure over the topmost metallization layer, where the first UBM structure includes a first plurality of conductive strips, each of the first plurality of conductive strips electrically coupled to a respective one of the first plurality of conductive patterns; and a second plurality of conductive strips interleaved with the first plurality of conductive strips, each of the second plurality of conductive strips electrically coupled to a respective one of the second plurality of conductive patterns.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Inventors: Yu-Chih Huang, Chi-Hui Lai, Ban-Li Wu, Ying-Cheng Tseng, Ting-Ting Kuo, Chih-Hsuan Tai, Hao-Yi Tsai, Chuei-Tang Wang, Chung-Shi Liu, Chen-Hua Yu, Chiahung Liu
  • Publication number: 20230253300
    Abstract: A chip package structure includes an interposer structure that contains a package-side redistribution structure, an interposer core assembly, and a die-side redistribution structure. The interposer core assembly includes at least one silicon substrate interposer, and each of the at least one silicon substrate interposer includes a respective silicon substrate, a respective set of through-silicon via (TSV) structures vertically extending through the respective silicon substrate, a respective set of interconnect-level dielectric layers embedding a respective set of metal interconnect structures, and a respective set of metal bonding structures that are electrically connected to the die-side redistribution structure. The chip package structure includes at least two semiconductor dies that are attached to the die-side redistribution structure, and an epoxy molding compound (EMC) multi-die frame that laterally encloses the at least two semiconductor dies.
    Type: Application
    Filed: March 28, 2023
    Publication date: August 10, 2023
    Inventors: Kuo Lung Pan, Yu-Chia Lai, Teng-Yuan Lo, Mao-Yen Chang, Po-Yuan Teng, Chen-Hua YU, Chung-Shi Liu, Hao-Yi Tsai, Ting-Hao Kuo
  • Publication number: 20230245967
    Abstract: A manufacturing method of a semiconductor package includes the following steps. A supporting layer is formed over a redistribution structure. A first planarization process is performed over the supporting layer. A lower dielectric layer is formed over the supporting layer, wherein the lower dielectric layer includes a concave exposing a device mounting region of the supporting layer. A first sacrificial layer is formed over the supporting layer, wherein the sacrificial layer filling the concave. A second planarization process is performed over the lower dielectric layer and the first sacrificial layer. A transition waveguide provided over the lower dielectric layer. The first sacrificial layer is removed. A semiconductor device is mounted over the device mounting region, wherein the semiconductor device includes a device waveguide is optically coupled to the transition waveguide.
    Type: Application
    Filed: March 27, 2023
    Publication date: August 3, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Hsiu-Jen Lin, Ming-Che Ho, Yu-Hsiang Hu, Chewn-Pu Jou, Cheng-Tse Tang
  • Publication number: 20230245939
    Abstract: In an embodiment, a device includes: an integrated circuit die; an encapsulant at least partially surrounding the integrated circuit die, the encapsulant including fillers having an average diameter; a through via extending through the encapsulant, the through via having a lower portion of a constant width and an upper portion of a continuously decreasing width, a thickness of the upper portion being greater than the average diameter of the fillers; and a redistribution structure including: a dielectric layer on the through via, the encapsulant, and the integrated circuit die; and a metallization pattern having a via portion extending through the dielectric layer and a line portion extending along the dielectric layer, the metallization pattern being electrically coupled to the through via and the integrated circuit die.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Inventors: Tzu-Sung Huang, Ming Hung Tseng, Yen-Liang Lin, Hao-Yi Tsai, Chi-Ming Tsai, Chung-Shi Liu, Chih-Wei Lin, Ming-Che Ho
  • Publication number: 20230236372
    Abstract: Photonic devices and methods of manufacture are provided. In embodiments a fill material and/or a secondary waveguide are utilized in order to protect other internal structures such as grating couplers from the rigors of subsequent processing steps. Through the use of these structures at the appropriate times during the manufacturing process, damage and debris that would otherwise interfere with the manufacturing process of the device or operation of the device can be avoided.
    Type: Application
    Filed: March 27, 2023
    Publication date: July 27, 2023
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Chih-Hsuan Tai, Hua-Kuei Lin, Tsung-Yuan Yu, Min-Hsiang Hsu
  • Publication number: 20230223357
    Abstract: A method of manufacturing a semiconductor package includes depositing a first dielectric layer over a carrier substrate. A first metallization pattern is formed over the first dielectric layer. The first metallization pattern has a first opening exposing the first dielectric layer. A second dielectric layer is deposited over the first metallization pattern, forming a dielectric slot through the first metallization pattern by filling the first opening. A second metallization pattern and a third dielectric layer are formed over the second dielectric layer. A through via is formed over the third dielectric layer, so that the dielectric slot is laterally under the through via.
    Type: Application
    Filed: May 24, 2022
    Publication date: July 13, 2023
    Inventors: Yi-Che Chiang, Chien-Hsun Chen, Tuan-Yu Hung, Hsin-Yu Pan, Wei-Kang Hsieh, Tsung-Hsien Chiang, Chao-Hsien Huang, Tzu-Sung Huang, Ming Hung Tseng, Wei-Chih Chen, Ban-Li Wu, Hao-Yi Tsai, Yu-Hsiang Hu, Chung-Shi Liu
  • Publication number: 20230223382
    Abstract: A semiconductor package includes a lower semiconductor device, a plurality of conductive pillars, an upper semiconductor device, an encapsulating material, and a redistribution structure. The plurality of conductive pillars are disposed on the lower semiconductor device along a direction parallel to a side of the lower semiconductor device. The upper semiconductor device is disposed on the lower semiconductor device and reveals a portion of the lower semiconductor device where the plurality of conductive pillars are disposed, wherein the plurality of conductive pillars disposed by the same side of the upper semiconductor device and the upper semiconductor device comprises a cantilever part cantilevered over the at least one lower semiconductor device. The encapsulating material encapsulates the lower semiconductor device, the plurality of conductive pillars, and the upper semiconductor device. The redistribution structure is disposed over the upper semiconductor device and the encapsulating material.
    Type: Application
    Filed: March 16, 2023
    Publication date: July 13, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Kang Hsieh, Hung-Yi Kuo, Hao-Yi Tsai, Kuo-Lung Pan, Ting Hao Kuo, Yu-Chia Lai, Mao-Yen Chang, Po-Yuan Teng, Shu-Rong Chun
  • Patent number: 11700698
    Abstract: A method for manufacturing a circuit board comprises: a first single-sided board and an insulating structure are provided. The first single-sided board is pressed to the insulating structure and covers opposite side surfaces of the insulating structure to form a first laminated board. A second single-sided board and a third single-sided board are provided. The second single-sided board is pressed to the third single-sided board and covers opposite side walls of the third single-sided board to form a second laminated board. An inner wiring layer is formed by the second laminated board. The second laminated board with the inner wiring layer and the first laminated board are pressed to form an intermediate structure. Outer wiring layers are formed by the intermediate structure. Covering films are formed on surfaces of the outer wiring layers. Electromagnetic interference shielding layers are formed on the covering films.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: July 11, 2023
    Assignees: HongQiSheng Precision Electronics (QinHuangDao) Co., Ltd., Avary Holding (Shenzhen) Co., Limited.
    Inventors: Hao-Yi Wei, Yan-Lu Li
  • Patent number: 11694966
    Abstract: A chip package including a first semiconductor die, a support structure and a second semiconductor die is provided. The first semiconductor die includes a first dielectric layer and a plurality of conductive vias, the first dielectric layer includes a first region and a second region, the conductive vias is embedded in the first region of the first dielectric layer; a plurality of conductive pillars is disposed on and electrically connected to the conductive vias. The second semiconductor die is stacked over the support structure and the second region of the first dielectric layer; and an insulating encapsulant encapsulates the first semiconductor die, the second semiconductor die, the support structure and the conductive pillars, wherein the second semiconductor die is electrically connected to the first semiconductor die through the conductive pillars.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: July 4, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Lung Pan, Hao-Yi Tsai, Tin-Hao Kuo
  • Patent number: D993928
    Type: Grant
    Filed: May 19, 2023
    Date of Patent: August 1, 2023
    Inventor: Hao Yi
  • Patent number: D996589
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: August 22, 2023
    Inventor: Hao Yi