Patents by Inventor HAO-YU LIN

HAO-YU LIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250070077
    Abstract: A system for reflowing a semiconductor workpiece including a stage, a first vacuum module and a second vacuum module, and an energy source is provided. The stage includes a base and a protrusion connected to the base, the stage is movable along a height direction of the stage relative to the semiconductor workpiece, the protrusion operably holds and heats the semiconductor workpiece, and the protrusion includes a first portion and a second portion surrounded by and spatially separated from the first portion. The first vacuum module and the second vacuum module respectively coupled to the first portion and the second portion of the protrusion, and the first vacuum module and the second vacuum module are operable to respectively apply a pressure to the first portion and the second portion. The energy source is disposed over the stage to heat the semiconductor workpiece held by the protrusion of the stage.
    Type: Application
    Filed: November 7, 2024
    Publication date: February 27, 2025
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Shiuan Wong, Ching-Hua Hsieh, Hsiu-Jen Lin, Hao-Jan Pei, Hsuan-Ting Kuo, Wei-Yu Chen, Chia-Shen Cheng, Philip Yu-Shuan Chung
  • Patent number: 12230597
    Abstract: A package structure is provided. The package structure includes a semiconductor chip and a protective layer laterally surrounding the semiconductor chip. The package structure also includes a polymer-containing element over the protective layer. The protective layer is wider than the polymer-containing element.
    Type: Grant
    Filed: June 16, 2023
    Date of Patent: February 18, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Jan Pei, Chih-Chiang Tsao, Wei-Yu Chen, Hsiu-Jen Lin, Ming-Da Cheng, Ching-Hua Hsieh, Chung-Shi Liu
  • Publication number: 20250054892
    Abstract: A package structure including a first substrate and a second substrate is provided. The first substrate includes first bumps with first lateral dimension and second bumps with second lateral dimension. The first bumps are distributed in a first region of the first substrate, and the second bumps are distributed in the second region of the first substrate, wherein the first lateral dimension is greater than the second lateral dimension, and a first bump height of the first bumps is smaller than a second bump height of the second bumps. The second substrate includes conductive terminals electrically connected to the first bumps and the second bumps.
    Type: Application
    Filed: January 4, 2024
    Publication date: February 13, 2025
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Wei Chiu, Wei-Yu Chen, Hsin Liang Chen, Hao-Jan Shih, Hsiu-Jen Lin, Ching-Hua Hsieh
  • Publication number: 20250048703
    Abstract: Semiconductor devices and methods of manufacture are presented. In embodiments a method of manufacturing the semiconductor device includes forming a fin from a plurality of semiconductor materials, depositing a dummy gate over the fin, depositing a plurality of spacers adjacent to the dummy gate, removing the dummy gate to form an opening adjacent to the plurality of spacers, widening the opening adjacent to a top surface of the plurality of spacers, after the widening, removing one of the plurality of semiconductor materials to form nanowires, and depositing a gate electrode around the nanowires.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 6, 2025
    Inventors: Cheng-Yu Wei, Hao-Ming Tang, Cheng-I Lin, Shu-Han Chen, Chi On Chui
  • Publication number: 20250033091
    Abstract: A brush wetting and cleaning system or tool including a brush wetting and cleaning housing. A wetting nozzle in fluid communication with a cavity in the brush wetting and cleaning housing. The wetting nozzle is configured to, in operation, wet a brush of a brush head inserted into the cavity of the brush wetting and cleaning housing. A spray nozzle in fluid communication with the cavity in the brush wetting and cleaning housing. The spray nozzle is configured to, in operation, clean the brush of the brush head inserted into the cavity of the brush wetting and cleaning housing. In a method of utilizing the brush wetting and cleaning system or tool, the brush of the brush head is wetted and cleaned between cleaning successive wafers or workpieces.
    Type: Application
    Filed: July 28, 2023
    Publication date: January 30, 2025
    Inventors: Shao-Yen KU, Ying-Chuan SU, Hao Yu WANG, Huan-Yung LIN
  • Publication number: 20230019980
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: April 14, 2022
    Publication date: January 19, 2023
    Inventors: Robert O. Lindefjeld, David A. Roberts, Hao-Yu Lin, Thomas Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel P. Monteiro
  • Publication number: 20210008591
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: April 13, 2020
    Publication date: January 14, 2021
    Inventors: Robert O. Lindefjeld, David A. Roberts, Hao-Yu Lin, Thomas Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel P. Monteiro
  • Patent number: 10661304
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: May 26, 2020
    Assignee: Nantero, Inc.
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel P. Monteiro
  • Publication number: 20180345316
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: August 10, 2018
    Publication date: December 6, 2018
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel P. Monteiro
  • Patent number: 10124367
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: November 13, 2018
    Assignee: Nantero, Inc.
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas R. Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel Pires Monteiro
  • Patent number: 10035118
    Abstract: A system and method for isolating and separating lipoaspirate particles. The system includes a generally cylindrical container having a lid and a bottom wherein the container includes at least one input port positioned to permit a lipoaspirate fluid to enter the container above the bottom; and a source of a vacuum coupled to the container to provide a partial vacuum during use of the system.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: July 31, 2018
    Assignee: SpineSmith Partners, L.P.
    Inventors: Ted Sand, David Chau, Matthew R. DeWitt, Sujata Ghosh, Kevin Hao-Yu Lin
  • Publication number: 20180001342
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: July 13, 2017
    Publication date: January 4, 2018
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel P. Monteiro
  • Publication number: 20170072431
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: August 19, 2016
    Publication date: March 16, 2017
    Inventors: David A. ROBERTS, Hao-Yu LIN, Thomas R. BENGTSON, Thomas RUECKES, Karl ROBINSON, H. Montgomery MANNING, Rahul SEN, Michel Pires MONTEIRO
  • Patent number: 9574290
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: February 21, 2017
    Assignee: Nantero Inc.
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas R. Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel Pires Monteiro
  • Patent number: 9422651
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: August 23, 2016
    Assignee: Nantero Inc.
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas R. Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel Monteiro
  • Publication number: 20130130371
    Abstract: A system and method for isolating and separating lipoaspirate particles. The system includes a generally cylindrical container having a lid and a bottom wherein the container includes at least one input port positioned to permit a lipoaspirate fluid to enter the container above the bottom; and a source of a vacuum coupled to the container to provide a partial vacuum during use of the system.
    Type: Application
    Filed: April 30, 2012
    Publication date: May 23, 2013
    Applicant: SpineSmith Partners, L.P.
    Inventors: Ted Sand, David Chau, Matthew R. DeWitt, Sujata Ghosh, Kevin Hao-Yu Lin
  • Publication number: 20110291315
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: March 30, 2011
    Publication date: December 1, 2011
    Applicant: Nantero, Inc.
    Inventors: David A. ROBERTS, Hao-Yu LIN, Thomas R. BENGTSON, Thomas RUECKES, Karl ROBINSON, H. Montgomery MANNING, Rahul SEN, Michel MONTEIRO
  • Publication number: 20110244121
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: November 12, 2010
    Publication date: October 6, 2011
    Applicant: Nantero, Inc.
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas R. Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel Pires Monteiro
  • Publication number: 20110203632
    Abstract: Photovoltaic (PV) devices employing layers of semiconducting carbon nanotubes as light absorption elements are disclosed. In one aspect a layer of p-type carbon nanotubes and a layer of n-type carbon nanotubes are used to form a p-n junction PV device. In another aspect a mixed layer of p-type and n-type carbon nanotubes are used to form a bulk hetero-junction PV device. In another aspect a metal such as a low work function metal electrode is formed adjacent to a layer of semiconducting nanotubes to form a Schottky barrier PV device. In another aspect various material deposition techniques well suited to working with nanotube layers are employed to realize a practical metal-insulator-semiconductor (MIS) PV device. In another aspect layers of metallic nanotubes are used to provide flexible electrode elements for PV devices. In another aspect layers of metallic nanotubes are used to provide transparent electrode elements for PV devices.
    Type: Application
    Filed: February 22, 2010
    Publication date: August 25, 2011
    Inventors: RAHUL SEN, SUCHIT SHAH, HAO-YU LIN, THOMAS RUECKES