Patents by Inventor Haoquan Yan
Haoquan Yan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240379375Abstract: A method for etching features in a carbon containing layer below a mask is provided. A simultaneous etch and passivation step is provided comprising flowing an etch gas comprising a boron containing passivant gas and an oxygen containing gas. A plasma is created from the etch gas, wherein the plasma etches features in the carbon containing layer.Type: ApplicationFiled: September 1, 2022Publication date: November 14, 2024Inventors: Xiaofeng SU, Priyadarsini SUBRAMANIAN, Zhongkui TAN, Yoshie KIMURA, Haoquan YAN, Denis Andreievich SYOMIN, Jing LI, Yijun CHEN
-
Publication number: 20240355667Abstract: An edge ring arrangement for a processing chamber includes a first ring configured to surround and overlap a radially outer edge of an upper plate of a pedestal arranged in the processing chamber, a second ring arranged below the first moveable ring, wherein a portion of the first ring overlaps the second ring, a first actuator configured to actuate a first pillar to selectively move the first ring to a raised position and a lowered position relative to the pedestal, and a second actuator configured to actuate a second pillar to selectively move the second ring to a raised position and a lowered position relative to the pedestal.Type: ApplicationFiled: June 28, 2024Publication date: October 24, 2024Inventors: Haoquan YAN, Robert Griffith O'NEILL, Raphael CASAES, Jon MCCHESNEY, Alex PATERSON
-
Patent number: 12087561Abstract: A processing chamber such as a plasma etch chamber can perform deposition and etch operations, where byproducts of the deposition and etch operations can build up in a vacuum pump system fluidly coupled to the processing chamber. A vacuum pump system may have multiple roughing pumps so that etch gases can be diverted a roughing pump and deposition precursors can be diverted to another roughing pump. A divert line may route unused deposition precursors through a separate roughing pump. Deposition byproducts can be prevented from forming by incorporating one or more gas ejectors or venturi pumps at an outlet of a primary pump in a vacuum pump system. Cleaning operations, such as waferless automated cleaning operations, using certain clean chemistries may remove deposition byproducts before or after etch operations.Type: GrantFiled: June 6, 2023Date of Patent: September 10, 2024Assignee: Lam Research CorporationInventors: John Stephen Drewery, Tom A. Kamp, Haoquan Yan, John Edward Daugherty, Ali Sucipto Tan, Ming-Kuei Tseng, Bruce Edmund Freeman
-
Patent number: 12027410Abstract: An edge ring arrangement for a processing chamber includes a first ring configured to surround and overlap a radially outer edge of an upper plate of a pedestal arranged in the processing chamber, a second ring arranged below the first moveable ring, wherein a portion of the first ring overlaps the second ring, a first actuator configured to actuate a first pillar to selectively move the first ring to a raised position and a lowered position relative to the pedestal, and a second actuator configured to actuate a second pillar to selectively move the second ring to a raised position and a lowered position relative to the pedestal.Type: GrantFiled: February 22, 2021Date of Patent: July 2, 2024Assignee: Lam Research CorporationInventors: Haoquan Yan, Robert Griffith O'Neill, Raphael Casaes, Jon Mcchesney, Alex Paterson
-
Publication number: 20230317437Abstract: A processing chamber such as a plasma etch chamber can perform deposition and etch operations, where byproducts of the deposition and etch operations can build up in a vacuum pump system fluidly coupled to the processing chamber. A vacuum pump system may have multiple roughing pumps so that etch gases can be diverted a roughing pump and deposition precursors can be diverted to another roughing pump. A divert line may route unused deposition precursors through a separate roughing pump. Deposition byproducts can be prevented from forming by incorporating one or more gas ejectors or venturi pumps at an outlet of a primary pump in a vacuum pump system. Cleaning operations, such as waferless automated cleaning operations, using certain clean chemistries may remove deposition byproducts before or after etch operations.Type: ApplicationFiled: June 6, 2023Publication date: October 5, 2023Inventors: John Stephen DREWERY, Tom A. KAMP, Haoquan YAN, John Edward DAUGHERTY, Ali Sucipto TAN, Ming-Kuei TSENG, Bruce Edmund FREEMAN
-
Patent number: 11710623Abstract: A processing chamber such as a plasma etch chamber can perform deposition and etch operations, where byproducts of the deposition and etch operations can build up in a vacuum pump system fluidly coupled to the processing chamber. A vacuum pump system may have multiple roughing pumps so that etch gases can be diverted a roughing pump and deposition precursors can be diverted to another roughing pump. A divert line may route unused deposition precursors through a separate roughing pump. Deposition byproducts can be prevented from forming by incorporating one or more gas ejectors or venturi pumps at an outlet of a primary pump in a vacuum pump system. Cleaning operations, such as waferless automated cleaning operations, using certain clean chemistries may remove deposition byproducts before or after etch operations.Type: GrantFiled: May 7, 2021Date of Patent: July 25, 2023Assignee: Lam Research CorporationInventors: John Stephen Drewery, Tom A. Kamp, Haoquan Yan, John Edward Daugherty, Ali Sucipto Tan, Ming-Kuei Tseng, Bruce Freeman
-
Publication number: 20210257195Abstract: A processing chamber such as a plasma etch chamber can perform deposition and etch operations, where byproducts of the deposition and etch operations can build up in a vacuum pump system fluidly coupled to the processing chamber. A vacuum pump system may have multiple roughing pumps so that etch gases can be diverted a roughing pump and deposition precursors can be diverted to another roughing pump. A divert line may route unused deposition precursors through a separate roughing pump. Deposition byproducts can be prevented from forming by incorporating one or more gas ejectors or venturi pumps at an outlet of a primary pump in a vacuum pump system. Cleaning operations, such as waferless automated cleaning operations, using certain clean chemistries may remove deposition byproducts before or after etch operations.Type: ApplicationFiled: May 7, 2021Publication date: August 19, 2021Inventors: John Stephen DREWERY, Tom A. KAMP, Haoquan YAN, John Edward DAUGHERTY, Ali Sucipto TAN, Ming-Kuei TSENG, Bruce FREEMAN
-
Publication number: 20210183687Abstract: An edge ring arrangement for a processing chamber includes a first ring configured to surround and overlap a radially outer edge of an upper plate of a pedestal arranged in the processing chamber, a second ring arranged below the first moveable ring, wherein a portion of the first ring overlaps the second ring, a first actuator configured to actuate a first pillar to selectively move the first ring to a raised position and a lowered position relative to the pedestal, and a second actuator configured to actuate a second pillar to selectively move the second ring to a raised position and a lowered position relative to the pedestal.Type: ApplicationFiled: February 22, 2021Publication date: June 17, 2021Inventors: Haoquan Yan, Robert Griffith O'Neill, Raphael Casaes, Jon McChesney, Alex Paterson
-
Patent number: 11031215Abstract: A processing chamber such as a plasma etch chamber can perform deposition and etch operations, where byproducts of the deposition and etch operations can build up in a vacuum pump system fluidly coupled to the processing chamber. A vacuum pump system may have multiple roughing pumps so that etch gases can be diverted a roughing pump and deposition precursors can be diverted to another roughing pump. A divert line may route unused deposition precursors through a separate roughing pump. Deposition byproducts can be prevented from forming by incorporating one or more gas ejectors or venturi pumps at an outlet of a primary pump in a vacuum pump system. Cleaning operations, such as waferless automated cleaning operations, using certain clean chemistries may remove deposition byproducts before or after etch operations.Type: GrantFiled: September 26, 2019Date of Patent: June 8, 2021Assignee: Lam Research CorporationInventors: John Stephen Drewery, Tom A. Kamp, Haoquan Yan, John Edward Daugherty, Ali Sucipto Tan, Ming-Kuei Tseng, Bruce Edmund Freeman
-
Patent number: 10658222Abstract: A substrate processing system includes a processing chamber and a pedestal arranged in the processing chamber. An edge coupling ring is arranged adjacent to a radially outer edge of the pedestal. A first actuator is configured to selectively move the edge coupling ring to a raised position, relative to the pedestal to provide clearance between the edge coupling ring and the pedestal to allow a robot arm to remove the edge coupling ring from the processing chamber.Type: GrantFiled: May 6, 2015Date of Patent: May 19, 2020Assignee: LAM RESEARCH CORPORATIONInventors: Haoquan Yan, Robert Griffith O'Neill, Raphael Casaes, Jon McChesney, Alex Paterson
-
Publication number: 20200105509Abstract: A processing chamber such as a plasma etch chamber can perform deposition and etch operations, where byproducts of the deposition and etch operations can build up in a vacuum pump system fluidly coupled to the processing chamber. A vacuum pump system may have multiple roughing pumps so that etch gases can be diverted a roughing pump and deposition precursors can be diverted to another roughing pump. A divert line may route unused deposition precursors through a separate roughing pump. Deposition byproducts can be prevented from forming by incorporating one or more gas ejectors or venturi pumps at an outlet of a primary pump in a vacuum pump system. Cleaning operations, such as waferless automated cleaning operations, using certain clean chemistries may remove deposition byproducts before or after etch operations.Type: ApplicationFiled: September 26, 2019Publication date: April 2, 2020Inventors: John Stephen Drewery, Tom A. Kamp, Haoquan Yan, John Edward Daugherty, Ali Sucipto Tan, Ming-Kuei Tseng, Bruce Edmund Freeman
-
Patent number: 10541168Abstract: A system for determining an alignment of an edge ring on a substrate support includes a robot control module configured to control a robot to place the edge ring onto the substrate support and retrieve the edge ring from the substrate support. An alignment module is configured to determine a plurality of first positions of the edge ring on the robot prior to being placed onto the substrate support and determine a plurality of second positions of the edge ring on the robot subsequent to being retrieved from the substrate support. An edge ring position module configured to determine a centered position of the edge ring relative to the substrate support based on offsets between the plurality of first positions and the plurality of second positions.Type: GrantFiled: October 31, 2017Date of Patent: January 21, 2020Assignee: LAM RESEARCH CORPORATIONInventors: Ali Sucipto Tan, Haoquan Yan, Marc Estoque, Damon Tyrone Genetti, Jon McChesney, Alexander Miller Paterson
-
Publication number: 20190341275Abstract: A method for performing a cleaning process in a processing chamber includes, without a substrate arranged on a substrate support of the processing chamber, supplying reactant gases in a side gas flow via side tuning holes of a gas distribution device to effect deposition of a coating on an edge ring of the substrate support. The side gas flow targets an outer region of the processing chamber above the edge ring, and the reactant gases are supplied at a first flow rate. The method further includes, while supplying the reactant gases via the side tuning holes, supplying inert gases in a center gas flow via center holes of the gas distribution device. The inert gases are supplied at a second flow rate that is greater than the first flow rate.Type: ApplicationFiled: May 7, 2018Publication date: November 7, 2019Inventors: Yansha JIN, Zhongkui Tan, Tyler Kent, Haoquan Yan, Qian Fu, Anthony Contreras
-
Publication number: 20190013232Abstract: An edge ring is configured to be raised and lowered relative to a pedestal, via one or more lift pins, in a processing chamber of a substrate processing system. The edge ring includes an upper surface, an annular inner diameter, an annular outer diameter, a lower surface, and at least one feature arranged in the lower surface of the edge ring. At least one inner surface of the at least one feature is sloped.Type: ApplicationFiled: September 14, 2018Publication date: January 10, 2019Inventors: Haoquan YAN, Robert Griffith O'NEILL, Raphael CASAES, Jon MCCHESNEY, Alex PATERSON
-
Publication number: 20180138069Abstract: A system for determining an alignment of an edge ring on a substrate support includes a robot control module configured to control a robot to place the edge ring onto the substrate support and retrieve the edge ring from the substrate support. An alignment module is configured to determine a plurality of first positions of the edge ring on the robot prior to being placed onto the substrate support and determine a plurality of second positions of the edge ring on the robot subsequent to being retrieved from the substrate support. An edge ring position module configured to determine a centered position of the edge ring relative to the substrate support based on offsets between the plurality of first positions and the plurality of second positions.Type: ApplicationFiled: October 31, 2017Publication date: May 17, 2018Inventors: Ali Sucipto Tan, Haoquan Yan, Marc Estoque, Damon Tyrone Genetti, Jon McChesney, Alexander Miller Paterson
-
Patent number: 9881999Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).Type: GrantFiled: June 19, 2009Date of Patent: January 30, 2018Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
-
Publication number: 20160211166Abstract: A substrate processing system includes a processing chamber and a pedestal arranged in the processing chamber. An edge coupling ring is arranged adjacent to a radially outer edge of the pedestal. A first actuator is configured to selectively move the edge coupling ring to a raised position, relative to the pedestal to provide clearance between the edge coupling ring and the pedestal to allow a robot arm to remove the edge coupling ring from the processing chamber.Type: ApplicationFiled: May 6, 2015Publication date: July 21, 2016Inventors: Haoquan Yan, Robert Griffith O'Neill, Raphael Casaes, Jon McChesney, Alex Paterson
-
Patent number: 7834264Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).Type: GrantFiled: December 22, 2006Date of Patent: November 16, 2010Assignee: The Regents of the University of CaliforniaInventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
-
Publication number: 20100003516Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).Type: ApplicationFiled: June 19, 2009Publication date: January 7, 2010Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
-
Patent number: 7569847Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).Type: GrantFiled: January 20, 2005Date of Patent: August 4, 2009Assignee: The Regents of the University of CaliforniaInventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan