Patents by Inventor Haoran YU

Haoran YU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944401
    Abstract: A virtual reality system providing a virtual robotic surgical environment, and methods for using the virtual reality system, are described herein. The virtual reality system may be used to expedite the R&D cycle during development of a robotic surgical system, such as by allowing simulation of potential design without the time and significant expense of physical prototypes. The virtual reality system may also be used to test a control algorithm or a control mode for a robotic surgical component.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: April 2, 2024
    Assignee: Verb Surgical Inc.
    Inventors: Haoran Yu, Pablo Eduardo Garcia Kilroy, Bernard Fai Kin Siu, Eric Mark Johnson
  • Patent number: 11923808
    Abstract: Low noise amplifiers (LNAs) with low noise figure are provided. In certain embodiments, an LNA includes a single-ended LNA stage including an input for receiving a single-ended input signal from an antenna and an output for providing a single-ended amplified signal, a balun for converting the single-ended amplified signal to a differential signal, and a variable gain differential amplification stage for amplifying the differential signal from the balun. Implementing the LNA in this manner provides low noise figure, high gain, flexibility in controlling gain, and less sensitivity to ground/supply impedance.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: March 5, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventors: Sanjeev Jain, Haoran Yu, Nan Sen Lin, Gregory Edward Babcock, Kai Jiang, Hassan Sarbishaei
  • Patent number: 11918312
    Abstract: A surgical robotic system has a surgical robotic arm, and a programmed processor that determines a longest principal axis of a velocity ellipsoid for a first configuration of the arm, applies a maximum task space velocity (that is in the direction of the longest principal axis) to an inverse kinematics equation which computes a potential joint space velocity, computes a ratio of i) the potential joint space velocity and ii) a joint space velocity limit of the arm, and applies the ratio to an initial joint space velocity, to produce a regulated joint space velocity. Other aspects are also described and claimed.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: March 5, 2024
    Assignee: Verb Surgical Inc.
    Inventor: Haoran Yu
  • Publication number: 20240062098
    Abstract: The subject technology receives first party training data provided by an end-user of a baseline machine learning model. The subject technology determines a first set of common features based on the first party training data. The subject technology receives, from at least one data source. The subject technology determines a second set of common features based on the set of datasets. The subject technology trains, using the first set of common features and the second set of common features, a second machine learning model, the second machine learning model incorporating additional training data from the external data supplier during training compared to the baseline machine learning model. The subject technology generates a boosted machine learning model based at least in part on the training, the boosted machine learning model comprising the trained second machine learning model.
    Type: Application
    Filed: August 23, 2022
    Publication date: February 22, 2024
    Inventors: Rachel Frances Blum, Nancy Dou, Matthew J. Glickman, Boxin Jiang, Orestis Kostakis, Justin Langseth, Michael Earle Rainey, Haoran Yu
  • Publication number: 20240041545
    Abstract: Engaging and/or homing is provided for a motor control of a surgical tool in a surgical robotic system. Where two or more motors are to control the same motion, the motors may be used to detect engagement even where no physical stop is provided. The motors operate in opposition to each other or in a way that does not attempt the same motion, resulting in one of the motors acting as a stop for the other motor in engagement. A change in motor operation then indicates the engagement. The known angles of engaged motors and the transmission linking the motor drives to the surgical tool indicate the home or current position of the surgical tool.
    Type: Application
    Filed: August 10, 2023
    Publication date: February 8, 2024
    Inventors: Renbin Zhou, Haoran Yu, Sina Nia Kosari
  • Publication number: 20240017415
    Abstract: A method for controlling a robotic arm in a robotic surgical system includes defining a reference plane at a predetermined reference location for a robotic arm, where the robotic arm includes a plurality of joints, and driving at least one of the plurality of joints to guide the robotic arm through a series of predetermined poses substantially constrained within the reference plane.
    Type: Application
    Filed: July 6, 2023
    Publication date: January 18, 2024
    Inventors: Renbin Zhou, Haoran Yu, Sina Nia Kosari, Omar J. Vakharia, Bernard Fai Kin Siu, Alex Kiturkes
  • Publication number: 20240000529
    Abstract: Robotic medical systems can be capable of intra-operative setup adjustment. A robotic system can include comprises a kinematic chain for performing a procedure. The robotic system can be configured to detect one or more conditions encountered by the kinematic chain. The one or more conditions can correspond to a respective adjustment to a pose of the kinematic chain. In response to detecting the one or more conditions or upon user request, the robotic system can generate a recommended adjustment of the kinematic chain in accordance with the one or more conditions. The robotic system can present a notification of the recommended adjustment of the kinematic chain to a user. In accordance with a determination that a first user command to execute the recommended adjustment has been received, the robotic system can adjust the pose of the kinematic chain in accordance with the recommended adjustment.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Yanan HUANG, Haoran YU, Mengjie LI, Kwan Suk KIM, Renbin ZHOU, Caitlin Marie ROMANCZYK, Thai Chau NGUYEN HUYNH, Alexander Tarek HASSAN
  • Patent number: 11759269
    Abstract: Engaging and/or homing is provided for a motor control of a surgical tool in a surgical robotic system. Where two or more motors are to control the same motion, the motors may be used to detect engagement even where no physical stop is provided. The motors operate in opposition to each other or in a way that does not attempt the same motion, resulting in one of the motors acting as a stop for the other motor in engagement. A change in motor operation then indicates the engagement. The known angles of engaged motors and the transmission linking the motor drives to the surgical tool indicate the home or current position of the surgical tool.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: September 19, 2023
    Assignee: Verb Surgical Inc.
    Inventors: Renbin Zhou, Haoran Yu, Sina Nia Kosari
  • Publication number: 20230284871
    Abstract: A first input coupling and a second input coupling are coupled to rotatably drive an output coupling at the same time. In one embodiment, the output coupling rotates a robotic surgery endoscope about a longitudinal axis of the output coupling. A first motor drives the first input coupling while being assisted by a second motor that is driving the second input coupling. A first compensator produces a first motor input based on a position error and in accordance with a position control law, and a second compensator produces a second motor input based on the position error and in accordance with an impedance control law. In another embodiment, the second compensator receives a measured torque of the first motor. Other embodiments are also described and claimed.
    Type: Application
    Filed: March 15, 2023
    Publication date: September 14, 2023
    Inventors: Haoran Yu, Renbin Zhou, Sina Nia Kosari, Andrea Bajo
  • Patent number: 11712805
    Abstract: A method for controlling a robotic arm in a robotic surgical system includes defining a reference plane at a predetermined reference location for a robotic arm, where the robotic arm includes a plurality of joints, and driving at least one of the plurality of joints to guide the robotic arm through a series of predetermined poses substantially constrained within the reference plane.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: August 1, 2023
    Assignee: Verb Surgical Inc.
    Inventors: Renbin Zhou, Haoran Yu, Sina Nia Kosari, Omar J. Vakharia, Bernard Fai Kin Siu, Alex Kiturkes
  • Publication number: 20230145995
    Abstract: A multi-loop resonance structure and a multiple-input and multiple-output (MIMO) antenna communication system. The multi-loop resonance structure includes a metal floor, a first feed branch plate, and a first metal patch, where the metal floor is disposed on a lower surface of the first dielectric substrate, and the metal floor is provided with a resonant-tank set; the first feed branch plate is disposed in parallel on an upper surface of the first dielectric substrate, and a first straight plate in the first feed branch plate is disposed opposite to the resonant-tank set along a substrate line; an end, in the first feed branch plate, far away from the substrate line is connected to the metal floor; and the first metal patch is connected to the metal floor through the first dielectric substrate along a first surface, in the second dielectric substrate, perpendicular to the first dielectric substrate.
    Type: Application
    Filed: March 4, 2022
    Publication date: May 11, 2023
    Inventors: Lixia Yang, Haoran YU, Aidi REN, Zhanhao ZHANG
  • Publication number: 20230145970
    Abstract: A surgical robotic system has a robotic grasper, a user interface device (UID), and one or more processors communicatively coupled to the UID and the robotic grasper. The system detects a directive to engage or re-engage a teleoperation mode, determines that the system is in a non-teleoperation mode, receives a sequence of user actions through the UID, determines the UID matches a jaw angle or a grip force of the robotic grasper, and transitions into teleoperation mode. Other embodiments are also described and claimed.
    Type: Application
    Filed: October 7, 2022
    Publication date: May 11, 2023
    Inventors: Ellen Klingbeil, Haoran Yu
  • Publication number: 20230130277
    Abstract: Provided is a zero-clearance fifth-generation (5G) ultra-wideband (UWB) Multiple-Input Multiple-Output (MIMO) antenna, including a main dielectric substrate, lateral dielectric substrates, and multiple antenna elements, where the lateral dielectric substrates are arranged at two sides of the main dielectric substrate; the multiple antenna elements are arranged on the lateral dielectric substrates; the antenna elements each include a feeding element and a grounding radiator element; the feeding element is provided at an inner side of each of the lateral dielectric substrates; and the grounding radiator element is provided at an outer side of the lateral dielectric substrate.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 27, 2023
    Inventors: Lixia Yang, Zhanhao Zhang, Aidi Ren, Haoran Yu
  • Publication number: 20230095653
    Abstract: Low noise amplifiers (LNAs) are disclosed herein. In certain embodiments, an LNA includes an input balun configured to convert a single-ended radio frequency (RF) receive signal to a differential RF receive signal, an amplifier chain configured to amplify the differential RF receive signal to generate a differential amplified RF receive signal, and an output balun configured to convert the differential amplified RF receive signal into a single-ended amplified RF receive signal. The LNA's amplifier chain is operable in multiple gain modes, and includes a first differential amplification stage, a second differential amplification stage, and a third differential amplification stage.
    Type: Application
    Filed: July 28, 2022
    Publication date: March 30, 2023
    Inventors: Sanjeev Jain, Haoran Yu, Nan Sen Lin, Hassan Sarbishaei
  • Patent number: 11614760
    Abstract: A front-end module comprises a low-dropout (LDO) voltage regulator, a reference current generator, and a power amplifier. The LDO voltage regulator, reference current generator, and power amplifier are integrated on a first semiconductor die.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: March 28, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Bang Li Liang, Yasser Khairat Soliman, Adrian John Bergsma, Haoran Yu, Hassan Sarbishaei
  • Patent number: 11607108
    Abstract: A first input coupling and a second input coupling are coupled to rotatably drive an output coupling at the same time. In one embodiment, the output coupling rotates a robotic surgery endoscope about a longitudinal axis of the output coupling. A first motor drives the first input coupling while being assisted by a second motor that is driving the second input coupling. A first compensator produces a first motor input based on a position error and in accordance with a position control law, and a second compensator produces a second motor input based on the position error and in accordance with an impedance control law. In another embodiment, the second compensator receives a measured torque of the first motor. Other embodiments are also described and claimed.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: March 21, 2023
    Assignee: VERB SURGICAL INC.
    Inventors: Haoran Yu, Renbin Zhou, Sina Nia Kosari, Andrea Bajo
  • Publication number: 20230063521
    Abstract: A system and computerized method for detection of engagement of a surgical tool to a tool drive of a robotic arm of a surgical robotic system. The method may include activating an actuator of the tool drive to rotate a drive disk to be mechanically engaged with a tool disk in the surgical tool. One or more motor operating parameters of the actuator that is causing the rotation of the drive disk are monitored while activating the actuator. The method detects when the drive disk becomes mechanically engaged with the tool disk, based on the one or more monitored motor operating parameters. Other embodiments are also described and claimed.
    Type: Application
    Filed: August 4, 2022
    Publication date: March 2, 2023
    Inventors: Haoran Yu, Alireza Hariri, Sina Nia Kosari, Renbin Zhou, Hasan Tutkun Sen, Ali Asadian
  • Patent number: 11595008
    Abstract: Low noise amplifiers (LNAs) with low noise figure are provided. In certain embodiments, an LNA includes a single-ended LNA stage including an input for receiving a single-ended input signal from an antenna and an output for providing a single-ended amplified signal, a balun for converting the single-ended amplified signal to a differential signal, and a variable gain differential amplification stage for amplifying the differential signal from the balun. Implementing the LNA in this manner provides low noise figure, high gain, flexibility in controlling gain, and less sensitivity to ground/supply impedance.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: February 28, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Sanjeev Jain, Haoran Yu, Nan Sen Lin, Gregory Edward Babcock, Kai Jiang, Hassan Sarbishaei
  • Patent number: 11580882
    Abstract: A virtual reality system providing a virtual robotic surgical environment, and methods for using the virtual reality system, are described herein. Within the virtual reality system, various user modes enable different kinds of interactions between a user and the virtual robotic surgical environment. For example, one variation of a method for facilitating navigation of a virtual robotic surgical environment includes displaying a first-person perspective view of the virtual robotic surgical environment from a first vantage point, displaying a first window view of the virtual robotic surgical environment from a second vantage point and displaying a second window view of the virtual robotic surgical environment from a third vantage point. Additionally, in response to a user input associating the first and second window views, a trajectory between the second and third vantage points can be generated sequentially linking the first and second window views.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: February 14, 2023
    Assignee: VERB SURGICAL INC.
    Inventors: Pablo Eduardo Garcia Kilroy, Eric Mark Johnson, Bernard Fai Kin Siu, Haoran Yu
  • Publication number: 20230011725
    Abstract: For teleoperation of a surgical robotic system, the user command for the pose of the end effector is projected into a subspace reachable by the end effector. For example, a user command with six DOF is projected to a five DOF subspace. The six DOF user interface device may be used to more intuitively control, based on the projection, the end effector with the limited DOF relative to the user interface device.
    Type: Application
    Filed: July 6, 2021
    Publication date: January 12, 2023
    Inventors: ELLEN KLINGBEIL, RENBIN ZHOU, HAORAN YU