Patents by Inventor Haotian Shi

Haotian Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250091000
    Abstract: This invention relates to methods and systems for reducing the concentration of SOx and/or NOx in gas streams.
    Type: Application
    Filed: November 25, 2024
    Publication date: March 20, 2025
    Applicants: University of Southern California, Tai Chong Cheang Steamship Co. (H.K.) Limited
    Inventors: Stephen B. CRONIN, Alec NYSTROM, Sriram SUBRAMANIAN, Vyaas GURURAJAN, Haotian SHI, Martin A. GUNDERSEN, William SCHROEDER, Sisi YANG, Christi SCHROEDER, Fokion EGOLFOPOULOS, Tom HUISKAMP
  • Publication number: 20250095480
    Abstract: The invention provides systems and methods for a computing power allocation system for autonomous driving (CPAS-AD), which is a component of an Intelligent Road Infrastructure System (IRIS). The CPAS-AD incorporates advanced computing capabilities that effectively allocate computational power for sensing, prediction, planning, decision-making, and control functions to enable end-to-end driving functions. In addition to the vehicle, the CPAS-AD can acquire additional computation resources from one or more of: (a) a roadside unit (RSU) network, (b) a cloud platform, (c) a traffic control center/traffic control unit (TCC/TCU), and (d) a traffic operations center (TOC). Additionally, tailored to different traffic scenarios, the CPAS-AD can allocate data and computation resources (including but not limited to CPU and GPU) for vehicle sensing, prediction, planning, decision-making, and control functions, thereby enabling safe and efficient autonomous driving.
    Type: Application
    Filed: November 26, 2024
    Publication date: March 20, 2025
    Inventors: Bin Ran, Bingjie Liang, Yan Zhao, Haozhan Ma, Renfei Wu, Yang Cheng, Yifan Yao, Keshu Wu, Tianyi Chen, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Publication number: 20250087081
    Abstract: The invention provides systems and methods for a function-based computing power allocation system (FCPAS), which is a component of an Intelligent Road Infrastructure System (IRIS). The FCPAS incorporates advanced computing capabilities that effectively allocate computational power for prediction, planning, and decision making functions. Specifically, through the FCPAS, an AV can acquire additional computational resources for vehicle prediction, planning, and decision-making functions, thereby enabling safe and efficient autonomous driving. Additionally, tailored to different traffic scenarios, the FCPAS can allocate data and computational resources (including but not limited to CPU and GPU) for vehicle automation.
    Type: Application
    Filed: November 26, 2024
    Publication date: March 13, 2025
    Inventors: Bin Ran, Bingjie Liang, Yan Zhao, Zhiyu Wang, Junfeng Jiang, Yang Cheng, Yifan Yao, Keshu Wu, Tianyi Chen, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Patent number: 12248876
    Abstract: A network threat intelligence relational triple combined extraction method based on deep learning includes: (a) an entity and a relation are both extracted by using a combined extraction method, which solves the problem of a lack of interaction between entity and relation extraction tasks; (b) a problem of entity overlapping is solved by using a method based on a span; (c) a BERT large-scale pre-training model is used for vector representation of a text; and because the pre-training model includes contextual information learned from a large-scale corpus, semantic expression on a threat intelligence text by the model can be extremely enriched; and (d) various modal information, for example, time sequences, dependency relations, the spans, labels, and the like, is fused to enhance the interaction between multimodal information.
    Type: Grant
    Filed: October 22, 2024
    Date of Patent: March 11, 2025
    Assignee: GUANGZHOU UNIVERSITY
    Inventors: Wenli Shang, Bowen Wang, Haotian Shi, Zhiwei Chang, Meng Zhang, Hai Jie, Zhong Cao, Man Zhang, Sha Huan
  • Publication number: 20250025518
    Abstract: Disclosed is the use of Bifidobacterium lactis BL-99 in the protection of cartilage. Provided in the present invention is the use of Bifidobacterium lactis in the preparation of a composition for protecting cartilage, wherein the Bifidobacterium lactis is Bifidobacterium lactis with the deposit number of CGMCC No. 15650. The Bifidobacterium lactis can promote the development of cartilage, increase cartilage density, protect cartilage from damage, promote cartilage repair and/or ameliorate cartilage damage, and is beneficial to cartilage health.
    Type: Application
    Filed: November 22, 2022
    Publication date: January 23, 2025
    Inventors: Wei-Lian Hung, Yujie Shi, Wei-Hsien Liu, Haotian Feng, Biao Liu, Wei Li, Qingshan Chen, Mingqiao Zhou
  • Publication number: 20240409114
    Abstract: Provided herein is technology relating to a function allocation system (FAS) that deploys artificial intelligence models for a connected automated highway (CAH) system and a connected automated vehicle (CAV) system to distribute driving intelligence between the CAV system and the CAH system. The FAS comprises a communication module, a data module, and a computing module. The computing module is configured to analyse scenes using sensing data, determine automated driving function requirements, deploy function allocation methods, and analyse CAH system and CAV system functions. The function allocation methods provide analysis, guidance, and optimization capabilities for sensing, decision-making, and control functions. The FAS allocates automated driving functions to the CAV system and the CAH system based on their respective intelligence levels.
    Type: Application
    Filed: August 20, 2024
    Publication date: December 12, 2024
    Inventors: Bin Ran, Peipei Mao, Jingwen Zhu, Wenqi Lu, Ziwei Yi, Linheng Li, Yang Cheng, Yuan Zheng, Keshu Wu, Linghui Xu, Tianyi Chen, Haotian Shi
  • Patent number: 12157089
    Abstract: This invention relates to methods and systems for reducing the concentration of SOx and/or NOx in gas streams.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: December 3, 2024
    Assignees: University of Southern California, Tai Chong Cheang Steamship Co. (H.K.) Limited
    Inventors: Stephen B. Cronin, Alec Nystrom, Sriram Subramanian, Vyaas Gururajan, Haotian Shi, Martin A. Gundersen, William Schroeder, Sisi Yang, Christi Schroeder, Fokion Egolfopoulos, Tom Huiskamp
  • Publication number: 20240386793
    Abstract: The invention provides a roadside computing system (RCS), or an edge computing system, for an autonomous vehicle. The RCS comprises a hierarchy of roadside unit (RSU) and an onboard unit (OBU) in an individual vehicle. The RSU comprises a data processing module and a communication module, and is capable of generating guidance information and targeted instructions for individual vehicle. The data processing module of the RSU comprises two processors: an External Object Calculating Module (EOCM) and an AI processing unit. Thus, the RCS utilizes roadside edge computing power and AI models to support autonomous driving for the vehicle. The OBU comprises a data processing module, a communication module, and a vehicle control module, and is capable of generating vehicle-specific targeted instruction for the vehicle based on guidance information and targeted instructions received from RSUs, and controlling the vehicle based on vehicle-specific targeted instruction.
    Type: Application
    Filed: June 4, 2024
    Publication date: November 21, 2024
    Inventors: Bin Ran, Bocheng An, Zhi Zhou, Min Li, Keshu Wu, Yang Cheng, Yifan Yao, Haotian Shi, Tianyi Chen, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Publication number: 20240351616
    Abstract: This invention presents a function allocation system for an autonomous vehicle (AV). During the operations of the AV, some or all of its automated driving capabilities or functions could be downgraded due to long-tail events or malfunctioning. The roadside intelligent infrastructure, or the cloud platform, could supplement some or all of AV's automated driving functions, including sensing, prediction and decision-making, and/or control functions. The function allocation system dynamically allocates these functions between AV and intelligent infrastructure, achieving a higher system intelligence level S than the downgraded vehicle intelligence level V. In addition, a function allocation system could dynamically allocate sensing, prediction and decision-making, and/or control functions between AV and a cloud platform. This invention also presents a function integration system or a fusion system for an AV.
    Type: Application
    Filed: July 2, 2024
    Publication date: October 24, 2024
    Inventors: Bin Ran, Junwei You, Keshu Wu, Weizhe Tang, Yang Cheng, Yifan Yao, Tianyi Chen, Shuoxuan Dong, Mingheng Zhang, Xiaotian Li, Shen Li, Kunsong Shi, Haotian Shi, Yanghui Mo, Hongjie Liu, Ran Yi
  • Publication number: 20240355203
    Abstract: This invention presents an automated driving system with distributed computing (ADS-DC). During the operation of a connected automated vehicle (CAV), some or all of its automated driving capabilities for sensing, prediction, planning, decision-making, or control may be downgraded due to long-tail events or malfunctions. The intelligent roadside toolbox (IRT) functions as an edge server or a cloud, and can supplement CAV's sensing functions, prediction and management functions, planning and decision-making functions, and vehicle control functions by providing customized, on-demand, and dynamic computing resources and functions to the CAV. In addition, the IRT computing functions provide the computation support for sensing, prediction, planning, decision-making, and/or control functions of said CAV. Namely, the IRT functions as an edge server or a cloud to provide processing, training or optimization of CAV driving models as well as facilitate the implementation of the driving models in the CAV.
    Type: Application
    Filed: July 3, 2024
    Publication date: October 24, 2024
    Inventors: Bin Ran, Sicheng Fu, Rui Gan, Yang Cheng, Shen Li, Kexin Tian, Tianyi Chen, Shuoxuan Dong, Kunsong Shi, Haotian Shi, Xiaotian Li
  • Publication number: 20240331529
    Abstract: The invention provides a vehicle AI computing system (VACS) that supports autonomous driving through an Onboard Unit (OBU) for vehicle-based computing and distributed computing based on vehicle road-cloud. The vehicle-based computing can effectively complete various computational tasks by using onboard computing resources. The distributed computing allows the vehicle to work in collaboration with roadside units (RSUs) and/or the cloud to effectively complete various computational tasks. The VACS features an OBU with a sensing module, a communication module, and a data processing module that integrates data from vehicle sensors, RSUs, and the cloud. The OBU also includes a vehicle control module that helps control the vehicle based on the data of RSU and cloud. The VACS leverages high performance computation resources to implement end to end driving tasks including sensing, prediction, planning and decision making, and control.
    Type: Application
    Filed: June 13, 2024
    Publication date: October 3, 2024
    Inventors: Bin Ran, Zhiyu Wang, Renfei Wu, Junfeng Jiang, Yang Cheng, Keshu Wu, Yifan Yao, Tianyi Chen, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Patent number: 12077175
    Abstract: Provided herein is technology relating to intelligent transportation systems and automated vehicles and particularly, but not exclusively, to function allocation systems and methods for a connected automated vehicle highway system that provides transportation management and operations and vehicle control for connected and automated vehicles.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: September 3, 2024
    Assignee: CAVH LLC
    Inventors: Bin Ran, Peipei Mao, Wenqi Lu, Ziwei Yi, Linheng Li, Yang Cheng, Linghui Xu, Yuan Zheng, Tianyi Chen, Haotian Shi, Keshu Wu
  • Patent number: 12046136
    Abstract: Provided herein is technology related to a distributed driving system (DDS) by using flexible, on-demand, and customized resources and functions from an intelligent roadside toolbox (IRT). These resources comprise computational resources, cloud resources, system security resources, backup and redundancy resources. The functions comprise sensing, transportation behavior prediction and management, planning and decision-making, and vehicle control functions. The DDS and IRT technologies described herein are vehicle oriented, modular, and customizable for each vehicle to meet the specific needs of each individual vehicle as an on-demand and dynamic service. The DDS is configured to provide customized, on-demand, and dynamic IRT resources and functions to individual CAVs to supplement the CAV's sensing, transportation behavior prediction and management, planning and decision-making, and/or vehicle control.
    Type: Grant
    Filed: July 13, 2023
    Date of Patent: July 23, 2024
    Assignee: CAVH LLC
    Inventors: Bin Ran, Yang Cheng, Shen Li, Kexin Tian, Tianyi Chen, Shuoxuan Dong, Kunsong Shi, Haotian Shi, Xiaotian Li
  • Patent number: 12037023
    Abstract: The technology described herein provides Automated Driving System (ADS) methods and systems for coordinating and/or fusing intelligence and functions between Connected Automated Vehicles (CAV) and ADS infrastructure to provide target levels of automated driving. The technology provides systems and methods for function allocation comprising sensing allocation, prediction and decision-making allocation, and control allocation. The ADS operates across various intelligence levels, identified during vehicle operation. The function allocation system dynamically allocates essential functions based on the intelligence levels of both vehicles and infrastructures, ensuring that ADS achieves a system intelligence that surpasses that of individual components. This methodical function distribution enables ADS to manage both vehicles and infrastructures in a manner that enhances vehicular operations and control.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: July 16, 2024
    Assignee: CAVH LLC
    Inventors: Bin Ran, Tianyi Chen, Shuoxuan Dong, Yang Cheng, Mingheng Zhang, Xiaotian Li, Shen Li, Kunsong Shi, Haotian Shi, Yifan Yao, Yanghui Mo, Hongjie Liu, Keshu Wu, Ran Yi
  • Patent number: 12020563
    Abstract: The invention provides systems and methods for an autonomous vehicle and cloud control system comprising an autonomous vehicle (AV) control system and a cloud-based platform, which are two components of an Intelligent Road Infrastructure System (IRIS). This integrated vehicle-cloud system provides sensing, prediction, decision-making, and control instructions for specific vehicles at a microscopic level. Specifically, through the system, AVs can be effectively and efficiently controlled by AV itself and/or by the cloud. The AV and cloud control system provides individual vehicles with detailed time-sensitive control instructions for vehicles to fulfill driving tasks. In addition, the cloud-based platform is configured to predict behavior of individual vehicles and provide planning and decision making at a microscopic level from 1 to 10 milliseconds, which is critical for AV operations.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: June 25, 2024
    Assignee: CAVH LLC
    Inventors: Bin Ran, Yang Cheng, Tianyi Chen, YIfan Yao, Keshu Wu, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Patent number: 12008893
    Abstract: The invention provides systems and methods for an autonomous vehicle (AV) control system comprising an onboard unit (OBU) and a roadside unit (RSU), which are two components of an Intelligent Road Infrastructure System (IRIS). This integrated vehicle-road system provides sensing, prediction, decision-making, and control instructions for specific vehicles at a microscopic level. Specifically, through the AV control system, an AV can be effectively and efficiently controlled by the AV itself and/or by the RSU. The AV control system provides individual vehicles with detailed time-sensitive control instructions for vehicles to fulfill driving tasks. In addition, the RSU conducts behavior prediction for individual vehicles at a microscopic level from 1 to 10 milliseconds, which is critical for connected and automated vehicle (CAV) operations.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: June 11, 2024
    Assignee: CAVH LLC
    Inventors: Bin Ran, Yang Cheng, Tianyi Chen, Yifan Yao, Keshu Wu, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Publication number: 20240029555
    Abstract: Provided herein is a technology for an Autonomous Vehicle Intelligent System (AVIS), which facilitates vehicle operations and control for connected automated vehicle highway (CAVH) systems. The AVIS and related methods provide vehicles with vehicle-specific information for a vehicle to perform driving tasks such as car following, lane changing, and route guidance. The AVIS comprises: (1) a communication module communicating with one or more of: (a) other autonomous vehicles (AV), (b) a roadside unit (RSU), (c) a cloud platform, or (d) a traffic control center/traffic control unit (TCC/TCU); and (2) an onboard unit (OBU) of an AV. The AVIS implements one or more of the following functions: sensing, prediction, decision-making, and vehicle control using onboard information and vehicle-specific information received from other AVs, the RSU, the cloud platform, and/or the TCC/TCU.
    Type: Application
    Filed: July 28, 2023
    Publication date: January 25, 2024
    Inventors: Bin Ran, Bingjie Liang, Yan Zhao, Yang Cheng, Yifan Yao, Keshu Wu, Tianyi Chen, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Publication number: 20240005779
    Abstract: Provided herein is a technology for an autonomous vehicle cloud system (AVCS). The AVCS provides sensing, prediction, decision-making, and/or control instructions for specific vehicles at a microscopic level using data from one or more of other vehicles, a roadside unit, cloud-based platform, or traffic control center/traffic control unit. Specifically, the autonomous vehicles are effectively and efficiently operated and controlled by the AVCS. The AVCS provides individual vehicles with detailed time-sensitive control instructions for vehicles to fulfill driving tasks. The AVCS is configured to predict individual vehicle behavior and provide planning and decision-making at a microscopic level to improve AV operations. In addition, the AVCS is configured to provide one or more of virtual traffic light management, travel demand assignment, traffic state estimation, and platoon control.
    Type: Application
    Filed: July 28, 2023
    Publication date: January 4, 2024
    Inventors: Bin Ran, Yuan Zheng, Can Wang, Yang Cheng, Yifan Yao, Keshu Wu, Tianyi Chen, Haotian Shi, Shen Li, Kunsong Shi, Zhen Zhang, Fan Ding, Huachun Tan, Yuankai Wu, Shuoxuan Dong, Linhui Ye, Xiaotian Li
  • Publication number: 20230377461
    Abstract: Provided herein is technology related to a distributed driving system (DDS) that provides transportation management and operations and vehicle control for connected and automated vehicles (CAV) and intelligent road infrastructure systems (IRIS) and particularly, but not exclusively, to methods and systems for sending individual vehicles with customized, detailed, and time-sensitive control instructions and traffic information for automated vehicle driving, such as vehicle following, lane changing, route guidance, and other related information
    Type: Application
    Filed: July 13, 2023
    Publication date: November 23, 2023
    Inventors: Bin Ran, Yang Cheng, Shen Li, Kexin Tian, Tianyi Chen, Shuoxuan Dong, Kunsong Shi, Haotian Shi, Xiaotian Li
  • Patent number: 11741834
    Abstract: Provided herein is technology related to a distributed driving system (DDS) that provides transportation management and operations and vehicle control for connected and automated vehicles (CAV) and intelligent road infrastructure systems (IRIS) and particularly, but not exclusively, to methods and systems for sending individual vehicles with customized, detailed, and time-sensitive control instructions and traffic information for automated vehicle driving, such as vehicle following, lane changing, route guidance, and other related information.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: August 29, 2023
    Assignee: CAVH LLC
    Inventors: Bin Ran, Shen Li, Yang Cheng, Tianyi Chen, Shuoxuan Dong, Kunsong Shi, Haotian Shi, Xiaotian Li