Patents by Inventor HAO-YU LIN

HAO-YU LIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153842
    Abstract: A semiconductor structure includes a die embedded in a molding material, the die having die connectors on a first side; a first redistribution structure at the first side of the die, the first redistribution structure being electrically coupled to the die through the die connectors; a second redistribution structure at a second side of the die opposing the first side; and a thermally conductive material in the second redistribution structure, the die being interposed between the thermally conductive material and the first redistribution structure, the thermally conductive material extending through the second redistribution structure, and the thermally conductive material being electrically isolated.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 9, 2024
    Inventors: Hao-Jan Pei, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Cheng-Ting Chen, Chia-Lun Chang, Chih-Wei Lin, Hsiu-Jen Lin, Ching-Hua Hsieh, Chung-Shi Liu
  • Patent number: 11969815
    Abstract: An automatic material changing and welding system for stamping materials includes a welding transfer sliding table and a welding platform. The automatic material changing device further includes a feeding system. The feeding system includes a double-head uncoiling machine, an automatic feeding machine and a flattening machine. The automatic material changing device is used for automatic feeding for a stamping machine. The system triggers a material changing signal through a sensor to control and integrate the welding transfer sliding table and the welding platform to act to execute a welding procedure, so that the stamping materials are in welding connection with new and old coiled materials through a welding connection plate to realize continuous production operation of an automated stamping production line.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: April 30, 2024
    Assignee: NATIONAL KAOHSIUNG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Chun-Chih Kuo, Hao-Lun Huang, Bor-Tsuen Lin, Cheng-Yu Yang
  • Patent number: 11962225
    Abstract: A fan braking structure includes a fan including a frame having an upright bearing cup, and a fan impeller having a vertical rotating shaft pivotally received in the bearing cup and provided at a free end with a groove; a braking structure located at a lower part of the bearing cup and including a brake plate and an electromagnet, and the brake plate being provided at one side with a protruded brake pin and at another side with a magnetic member; and an elastic element disposed between and pressed against a top of the shell and the brake plate. When the fan is inactive, the electromagnet is energized to produce magnetic poles that repel the magnetic member and compress the elastic element, such that the brake pin is magnetically pushed toward the rotating shaft to engage with the groove, causing the fan to brake and stop rotating inertially.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: April 16, 2024
    Assignee: Asia Vital Components Co., Ltd.
    Inventors: Chih-Cheng Tang., Hao-Yu Chen, Hsu-Jung Lin
  • Publication number: 20240105642
    Abstract: A method of manufacturing a package structure at least includes the following steps. An encapsulant laterally is formed to encapsulate the die and the plurality of through vias. A plurality of first connectors are formed to electrically connect to first surfaces of the plurality of through vias. A warpage control material is formed over the die, wherein the warpage control material is disposed to cover an entire surface of the die. A protection material is formed over the encapsulant and around the plurality of first connectors and the warpage control material. A coefficient of thermal expansion of the protection material is less than a coefficient of thermal expansion of the encapsulant.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 28, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Jan Pei, Ching-Hua Hsieh, Hsiu-Jen Lin, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Jen-Jui Yu, Cheng-Shiuan Wong
  • Patent number: 11942464
    Abstract: In an embodiment, a method includes: aligning a first package component with a second package component, the first package component having a first region and a second region, the first region including a first conductive connector, the second region including a second conductive connector; performing a first laser shot on a first portion of a top surface of the first package component, the first laser shot reflowing the first conductive connector of the first region, the first portion of the top surface of the first package component completely overlapping the first region; and after performing the first laser shot, performing a second laser shot on a second portion of the top surface of the first package component, the second laser shot reflowing the second conductive connector of the second region, the second portion of the top surface of the first package component completely overlapping the second region.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Jan Pei, Hsiu-Jen Lin, Wei-Yu Chen, Philip Yu-Shuan Chung, Chia-Shen Cheng, Kuei-Wei Huang, Ching-Hua Hsieh, Chung-Shi Liu, Chen-Hua Yu
  • Patent number: 11933311
    Abstract: A fan brake structure includes a fan and a brake device. The fan has a frame body, a fan impeller and a stator. The brake device is disposed under a bottom of a bearing cup. The brake device has a driving member, a brake member and an elastic member. The elastic member abuts against one end of the brake member. The other end of the brake member has a boss body. The driving member has a spiral rail. When the driving member rotates, the boss body moves along the spiral rail, whereby the brake member linearly reciprocally moves upward to brake the fan impeller or linearly reciprocally moves downward to release the fan impeller from the braking.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: March 19, 2024
    Assignee: ASIA VITAL COMPONENTS CO., LTD.
    Inventors: Chih-Cheng Tang, Hao-Yu Chen, Hsu-Jung Lin
  • Patent number: 11936278
    Abstract: A fan braking structure includes a fan including a frame having an upright bearing cup, and a fan impeller having a vertical rotating shaft pivotally received in the bearing cup and provided at a free end with a groove; a braking structure located at a lower part of the bearing cup and including a brake plate and an electromagnet, and the brake plate being provided at one side with a protruded brake pin and at another side with a magnetic member; and an elastic element disposed between and pressed against the brake plate and the electromagnet. When the fan is powered off, the electromagnet is energized and produces magnetic poles that magnetically repel the magnetic member, such that the brake pin is pushed by a magnetic force and the elastic element toward the rotating shaft to engage with the groove, causing the fan to brake and stop rotating inertially.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: March 19, 2024
    Assignee: Asia Vital Components Co., Ltd.
    Inventors: Chih-Cheng Tang, Hao-Yu Chen, Hsu-Jung Lin
  • Publication number: 20240088062
    Abstract: A package structure includes a die, an encapsulant laterally encapsulating the die, a warpage control material disposed over the die, and a protection material disposed over the encapsulant and around the warpage control material. A coefficient of thermal expansion of the protection material is less than a coefficient of thermal expansion of the encapsulant.
    Type: Application
    Filed: November 23, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Jan Pei, Ching-Hua Hsieh, Hsiu-Jen Lin, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Jen-Jui Yu, Cheng-Shiuan Wong
  • Patent number: 11929331
    Abstract: The present disclosure provides a routing structure. The routing structure includes a substrate having a boundary and a first conductive trace configured to be coupled to a first conductive pad disposed within the boundary of the substrate. The first conductive trace is inclined with respect to the boundary of the substrate.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chin-Shen Lin, Wan-Yu Lo, Meng-Xiang Lee, Hao-Tien Kan, Kuo-Nan Yang, Chung-Hsing Wang
  • Publication number: 20240071888
    Abstract: A package structure including a redistribution circuit structure, a wiring substrate, first conductive terminals, an insulating encapsulation, and a semiconductor device is provided. The redistribution circuit structure includes stacked dielectric layers, redistribution wirings and first conductive pads. The first conductive pads are disposed on a surface of an outermost dielectric layer among the stacked dielectric layers, the first conductive pads are electrically connected to outermost redistribution pads among the redistribution wirings by via openings of the outermost dielectric layer, and a first lateral dimension of the via openings is greater than a half of a second lateral dimension of the outermost redistribution pads. The wiring substrate includes second conductive pads. The first conductive terminals are disposed between the first conductive pads and the second conductive pads. The insulating encapsulation is disposed on the surface of the redistribution circuit structure.
    Type: Application
    Filed: August 28, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Chang Lin, Yen-Fu Su, Chin-Liang Chen, Wei-Yu Chen, Hsin-Yu Pan, Yu-Min Liang, Hao-Cheng Hou, Chi-Yang Yu
  • Publication number: 20230019980
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: April 14, 2022
    Publication date: January 19, 2023
    Inventors: Robert O. Lindefjeld, David A. Roberts, Hao-Yu Lin, Thomas Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel P. Monteiro
  • Publication number: 20210008591
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: April 13, 2020
    Publication date: January 14, 2021
    Inventors: Robert O. Lindefjeld, David A. Roberts, Hao-Yu Lin, Thomas Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel P. Monteiro
  • Patent number: 10661304
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: May 26, 2020
    Assignee: Nantero, Inc.
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel P. Monteiro
  • Publication number: 20180345316
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: August 10, 2018
    Publication date: December 6, 2018
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel P. Monteiro
  • Patent number: 10124367
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: November 13, 2018
    Assignee: Nantero, Inc.
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas R. Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel Pires Monteiro
  • Patent number: 10035118
    Abstract: A system and method for isolating and separating lipoaspirate particles. The system includes a generally cylindrical container having a lid and a bottom wherein the container includes at least one input port positioned to permit a lipoaspirate fluid to enter the container above the bottom; and a source of a vacuum coupled to the container to provide a partial vacuum during use of the system.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: July 31, 2018
    Assignee: SpineSmith Partners, L.P.
    Inventors: Ted Sand, David Chau, Matthew R. DeWitt, Sujata Ghosh, Kevin Hao-Yu Lin
  • Publication number: 20180001342
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: July 13, 2017
    Publication date: January 4, 2018
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel P. Monteiro
  • Publication number: 20170072431
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Application
    Filed: August 19, 2016
    Publication date: March 16, 2017
    Inventors: David A. ROBERTS, Hao-Yu LIN, Thomas R. BENGTSON, Thomas RUECKES, Karl ROBINSON, H. Montgomery MANNING, Rahul SEN, Michel Pires MONTEIRO
  • Patent number: 9574290
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: February 21, 2017
    Assignee: Nantero Inc.
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas R. Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel Pires Monteiro
  • Patent number: 9422651
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: August 23, 2016
    Assignee: Nantero Inc.
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas R. Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel Monteiro