Patents by Inventor Harald Konig

Harald Konig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942763
    Abstract: In one embodiment, the semiconductor laser (1) comprises a semiconductor layer sequence (2) based on the material system AlInGaN with at least one active zone (22) for generating laser radiation. A heat sink (3) is thermally connected to the semiconductor layer sequence (2) and has a thermal resistance towards the semiconductor layer sequence (2). The semiconductor layer sequence (2) is divided into a plurality of emitter strips (4) and each emitter strip (4) has a width (b) of at most 0.3 mm in the direction perpendicular to a beam direction (R). The emitter strips (4) are arranged with a filling factor (FF) of less than or equal to 0.4. The filling factor (FF) is set such that laser radiation having a maximum optical output power (P) can be generated during operation.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 26, 2024
    Assignee: OSRAM OLED GMBH
    Inventors: Harald König, Bernhard Stojetz, Alfred Lell, Muhammad Ali
  • Publication number: 20240088622
    Abstract: In one embodiment the semiconductor laser comprises a carrier and an edge-emitting laser diode which is mounted on the carrier and which comprises an active zone for generating a laser radiation and a facet with a radiation exit region. The semiconductor laser further comprises a protective cover, preferably a lens for collimation of the laser radiation. The protective cover is fastened to the facet and to a side surface of the carrier by means of an adhesive. A mean distance between a light entrance side of the protective cover and the facet is at most 60 ?m. The semiconductor laser is configured to be operated in a normal atmosphere without additional gas-tight encapsulation.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: OSRAM OLED GmbH
    Inventors: Jörg Erich SORG, Harald KÖNIG, Alfred LELL, Florian PESKOLLER, Karsten AUEN, Roland SCHULZ, Herbert BRUNNER, Frank SINGER, Roland HÜTTINGER
  • Patent number: 11870214
    Abstract: In one embodiment the semiconductor laser comprises a carrier and an edge-emitting laser diode which is mounted on the carrier and which comprises an active zone for generating a laser radiation and a facet with a radiation exit region. The semiconductor laser further comprises a protective cover, preferably a lens for collimation of the laser radiation. The protective cover is fastened to the facet and to a side surface of the carrier by means of an adhesive. A mean distance between a light entrance side of the protective cover and the facet is at most 60 ?m. The semiconductor laser is configured to be operated in a normal atmosphere without additional gas-tight encapsulation.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: January 9, 2024
    Assignee: OSRAM OLED GMBH
    Inventors: Jörg Erich Sorg, Harald König, Alfred Lell, Florian Peskoller, Karsten Auen, Roland Schulz, Herbert Brunner, Frank Singer, Roland Hüttinger
  • Publication number: 20230420919
    Abstract: In an embodiment a radiation-emitting laser diode includes a waveguide layer sequence having an active region configured to generate electromagnetic radiation with a preferred polarization direction, a first waveguide layer of a first doping type and a second waveguide layer of a second doping type, wherein the active region is arranged between the first waveguide layer and the second waveguide layer, wherein refractive indices of the waveguide layer sequence form a first effective refractive index for a transverse electric (TE) mode with its electric field oscillating in a first transverse direction and a second effective refractive index for a transverse magnetic (TM) mode with its electric field oscillating in a second transverse direction, and wherein an effective refractive index difference of the first effective refractive index and the second effective refractive index is at least 4·10?4.
    Type: Application
    Filed: December 3, 2020
    Publication date: December 28, 2023
    Inventors: Christian Lauer, Martin Mueller, Michael Furitsch, Harald König
  • Patent number: 11735887
    Abstract: In one embodiment the semiconductor laser (1) comprises a carrier (2) and an edge-emitting laser diode (3) which is mounted on the carrier (2) and which comprises an active zone (33) for generating a laser radiation (L) and a facet (30) with a radiation exit region (31). The semiconductor laser (1) further comprises a protective cover (4), preferably a lens for collimation of the laser radiation (L). The protective cover (4) is fastened to the facet (30) and to a side surface (20) of the carrier (2) by means of an adhesive (5). A mean distance between a light entrance side (41) of the protective cover (4) and the facet (30) is at most 60 ?m. The semiconductor laser (1) is configured to be operated in a normal atmosphere without additional gas-tight encapsulation.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: August 22, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Jörg Erich Sorg, Harald König, Alfred Lell, Florian Peskoller, Karsten Auen, Roland Schulz, Herbert Brunner, Frank Singer, Roland Hüttinger
  • Publication number: 20230253754
    Abstract: The invention relates to a laser device which includes at least one laser diode having an emission surface via which the laser diode can emit laser light during operation, and a screening element having an entry surface facing the emission surface.
    Type: Application
    Filed: July 7, 2021
    Publication date: August 10, 2023
    Applicant: ams-OSRAM International GmbH
    Inventors: Jörg Erich SORG, Markus Reinhard HORN, Jan SEIDENFADEN, Harald KÖNIG
  • Publication number: 20230198231
    Abstract: In an embodiment a semiconductor laser component includes a plurality of semiconductor lasers, each of the semiconductor lasers configured to emit primary electromagnetic radiation of a primary spectral bandwidth in a visible wavelength range and a beam combiner configured to combine the primary electromagnetic radiations emitted from the semiconductor lasers, form secondary electromagnetic radiation from a superposition of the primary electromagnetic radiations of the semiconductor lasers and couple the secondary electromagnetic radiation out from the beam combiner, wherein the secondary electromagnetic radiation has a secondary spectral bandwidth that is at least twice as large as an average value of the primary spectral bandwidths.
    Type: Application
    Filed: May 5, 2021
    Publication date: June 22, 2023
    Inventors: Jörg Erich Sorg, Markus Reinhard Horn, Jan Seidenfaden, Harald König
  • Publication number: 20230170667
    Abstract: The invention relates to a method for producing a semi-conductor laser arrangement, in which a first laser diode chip is arranged on a first intermediate support. A second laser diode chip is arranged on a second intermediate support. The second laser diode chip with the second intermediate support is arranged on the first intermediate support, the second intermediate support being arranged on a side of the second laser diode chip facing away from the first intermediate support. The invention furthermore relates to a semi-conductor arrangement.
    Type: Application
    Filed: April 20, 2021
    Publication date: June 1, 2023
    Applicant: ams-OSRAM International GmbH
    Inventors: Markus Reinhard HORN, Jörg Erich SORG, Harald KÖNIG
  • Publication number: 20230068945
    Abstract: In one embodiment the semiconductor laser comprises a carrier and an edge-emitting laser diode which is mounted on the carrier and which comprises an active zone for generating a laser radiation and a facet with a radiation exit region. The semiconductor laser further comprises a protective cover, preferably a lens for collimation of the laser radiation. The protective cover is fastened to the facet and to a side surface of the carrier by means of an adhesive. A mean distance between a light entrance side of the protective cover and the facet is at most 60 ?m. The semiconductor laser is configured to be operated in a normal atmosphere without additional gas-tight encapsulation.
    Type: Application
    Filed: October 21, 2022
    Publication date: March 2, 2023
    Applicant: OSRAM OLED GmbH
    Inventors: Jörg Erich SORG, Harald KÖNIG, Alfred LELL, Florian PESKOLLER, Karsten AUEN, Roland SCHULZ, Herbert BRUNNER, Frank SINGER, Roland HÜTTINGER
  • Publication number: 20220337027
    Abstract: An optoelectronic component (1) is specified having: an optoelectronic semiconductor chip (2) which generates electromagnetic radiation during operation, and a metallic layer (3) which is arranged on the semiconductor chip (2), wherein an outer surface of the metallic layer (4) has a structuring (5), identification of the component (1) is made possible by means of the structuring (5), and the metallic layer (3) is formed continuously. Furthermore, a method for producing an optoelectronic component (1) is specified.
    Type: Application
    Filed: November 27, 2019
    Publication date: October 20, 2022
    Inventors: Sven Gerhard, André Somers, Harald König, Muhammad Ali
  • Publication number: 20220263293
    Abstract: In one embodiment, the semiconductor laser comprises a carrier and one or more laser bars. The at least one laser bar comprises at least three individual lasers arranged parallel to each other. A deflection optic is arranged downstream of the individual lasers in common. The at least one laser bar and the associated deflection optic are mounted on the carrier and comprise a distance from one another of at most 4 mm.
    Type: Application
    Filed: April 8, 2020
    Publication date: August 18, 2022
    Inventors: Muhammad Ali, Harald König, Bernhard Stojetz, Alfred Lell
  • Publication number: 20220013980
    Abstract: An optoelectronic semiconductor laser component is specified. The optoelectronic semiconductor laser component comprises a semiconductor body with a first main surface, a second main surface, at least one active region formed between the first main surface and the second main surface, an output coupling surface extending from the first main surface to the second main surface, through which at least a part of the electromagnetic radiation is coupled out, a first heat sink arranged on the first main surface and a second heat sink arranged on the second main surface, and an optical protective element arranged downstream of the output coupling surface, for which the first heat sink and/or the second heat sink form a carrier. The outcoupling takes place in a main emission direction. Electrical contacting of the semiconductor body takes place by means of the first heat sink and the second heat sink.
    Type: Application
    Filed: November 18, 2019
    Publication date: January 13, 2022
    Inventors: Harald König, Alfred Lell
  • Publication number: 20210391695
    Abstract: The diode laser comprises a laser bar having a semiconductor body and an active layer, wherein the laser bar has a plurality of individual emitters. At least some individual emitters are respectively assigned a section of the semiconductor body and a current regulating element's connected in series therewith, such that, during operation of the individual emitters as intended, an electrical operating current I0 fed to the individual emitter in each case flows completely through the assigned section of the semiconductor body and in the process a voltage drop UH occurs at the section and at least part of said operating current I0 flows through the assigned current regulating element and experiences an electrical resistance RS in the process. In the case of the individual emitters, the current regulating element assigned in each case is configured such that the resistance Rg at an operating temperature T0 has a positive temperature coefficient dRS/dT|T0.
    Type: Application
    Filed: November 7, 2019
    Publication date: December 16, 2021
    Inventors: Harald König, Bernhard Stojetz, Alfred Lell, Muhammad Ali
  • Publication number: 20210391685
    Abstract: In one embodiment, the invention relates to a semiconductor laser comprising a semiconductor layer sequence for generating laser radiation. According to the invention, the semiconductor layer sequence has a geometric structuring on a top side. A resonator is located in the semiconductor layer sequence and is delimited by opposing facets, wherein the facets contain optically active resonator end faces. The structuring ends spaced apart from the facets. The resonator end faces are spaced apart from material removals from the semiconductor layer sequence.
    Type: Application
    Filed: October 4, 2019
    Publication date: December 16, 2021
    Inventors: Muhammad Ali, Harald König, Sven Gerhard, Alfred Lell
  • Publication number: 20210367406
    Abstract: In one embodiment, the semiconductor laser (1) comprises a semiconductor layer sequence (2) based on the material system AlInGaN with at least one active zone (22) for generating laser radiation. A heat sink (3) is thermally connected to the semiconductor layer sequence (2) and has a thermal resistance towards the semiconductor layer sequence (2). The semiconductor layer sequence (2) is divided into a plurality of emitter strips (4) and each emitter strip (4) has a width (b) of at most 0.3 mm in the direction perpendicular to a beam direction (R). The emitter strips (4) are arranged with a filling factor (FF) of less than or equal to 0.4. The filling factor (FF) is set such that laser radiation having a maximum optical output power (P) can be generated during operation.
    Type: Application
    Filed: December 14, 2018
    Publication date: November 25, 2021
    Inventors: Harald König, Bernhard Stojetz, Alfred Lell, Muhammad Ali
  • Patent number: 11086138
    Abstract: A method of autostereoscopic imaging including providing an autostereoscopic illumination unit including a lens field composed of a multiplicity of individual lenses or concave mirrors, and modulating an emission characteristic of the light source such that the individual lenses or the concave mirrors are illuminated only partly by the light source, wherein light from the light source impinges on the individual lenses or concave mirrors such that an emission characteristic of a three-dimensional object is imitated, the lens field extends over a spatial angle range of at least 2 sr relative to the light source or an external observer, the individual lenses or concave mirrors are distributed over the lens field and are at least partially sequentially irradiated, and the light source is formed by one or more lasers and the laser or each of the lasers irradiates/irradiate only one of the individual lenses at a specific point in time.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: August 10, 2021
    Assignee: OSRAM OLED GmbH
    Inventors: Bernhard Stojetz, Alfred Lell, Christoph Eichler, Andreas Löffler, Harald König, André Somers, Clemens Vierheilig
  • Publication number: 20210234068
    Abstract: An optoelectronic semiconductor device and a method for manufacturing an optoelectronic semiconductor device are disclosed. In an embodiment an optoelectronic semiconductor device includes a semiconductor body having a first region of a first conductive type, an active region configured to generate electromagnetic radiation, a second region of a second conductive type and a coupling-out surface configured to couple-out the electromagnetic radiation, wherein the first region, the active region and the second region are arranged along a stacking direction, wherein the active region extends from a rear surface opposite the coupling-out surface to the coupling-out surface along a longitudinal direction transverse to or perpendicular to the stacking direction, and wherein the coupling-out surface is arranged plane-parallel to the rear surface.
    Type: Application
    Filed: April 13, 2021
    Publication date: July 29, 2021
    Inventors: Harald König, Jens Ebbecke, Alfred Lell, Sven Gerhard, Clemens Vierheilig
  • Patent number: 11005005
    Abstract: An optoelectronic semiconductor device and a method for manufacturing an optoelectronic semiconductor device are disclosed. In an embodiment an optoelectronic semiconductor device includes a semiconductor body comprising a first region of a first conductive type, an active region, a second region of a second conductive type and a coupling-out surface, wherein the first region, the active region and the second region are arranged along a stacking direction, wherein the active region extends from a rear surface opposite the coupling-out surface to the coupling-out surface along a longitudinal direction transverse to or perpendicular to the stacking direction, wherein the coupling-out surface is arranged plane-parallel to the rear surface, and wherein the coupling-out surface and the rear surface of the semiconductor body are produced by an etching process.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: May 11, 2021
    Assignee: OSRAM OLED GMBH
    Inventors: Harald König, Jens Ebbecke, Alfred Lell, Sven Gerhard, Clemens Vierheilig
  • Publication number: 20200313399
    Abstract: In one embodiment the semiconductor laser (1) comprises a carrier (2) and an edge-emitting laser diode (3) which is mounted on the carrier (2) and which comprises an active zone (33) for generating a laser radiation (L) and a facet (30) with a radiation exit region (31). The semiconductor laser (1) further comprises a protective cover (4), preferably a lens for collimation of the laser radiation (L). The protective cover (4) is fastened to the facet (30) and to a side surface (20) of the carrier (2) by means of an adhesive (5). A mean distance between a light entrance side (41) of the protective cover (4) and the facet (30) is at most 60 ?m. The semiconductor laser (1) is configured to be operated in a normal atmosphere without additional gas-tight encapsulation.
    Type: Application
    Filed: October 8, 2018
    Publication date: October 1, 2020
    Inventors: Jörg Erich SORG, Harald KÖNIG, Alfred LELL, Florian PESKOLLER, Karsten AUEN, Roland SCHULZ, Herbert BRUNNER, Frank SINGER, Roland HÜTTINGER
  • Publication number: 20200259309
    Abstract: A light-emitting semiconductor component (99) comprising a laser bar (100) comprising at least two individual emitters (2), and a conversion element (300) arranged downstream of the laser bar (100) in the beam path, wherein at least some of the individual emitters (2) are arranged side by side in a lateral transverse direction (X), the laser bar (100) is formed with a nitride compound semiconductor material, the individual emitters (2) are configured to emit primary radiation (L1) during normal operation and the conversion element (300) is configured to convert at least part of the primary radiation (L1) into secondary radiation (L2), the secondary radiation (L2) having a longer wavelength than the primary radiation (L1).
    Type: Application
    Filed: September 12, 2018
    Publication date: August 13, 2020
    Inventors: Alfred LELL, Muhammad ALI, Bernhard STOJETZ, Harald KÖNIG