Patents by Inventor Harald Philipp

Harald Philipp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9141227
    Abstract: Two different sets of electrodes in a touch sensitive device are formed to produce an electric field gradient from one end of the electrodes to the other end when opposite ends of the electrodes are driven with different voltages. A signal measuring cycle is performed by alternately driving the ends of one set of electrodes, while using the other set of electrodes to receive signals. The roles of the sets of electrodes are then reversed, such that the set that that was driven is now used to receive signals from the other set of electrodes. Reference signals may be obtained by driving both sides of one set of electrodes, and then both sides of the other set of electrodes. The signals obtained are then used to determine the touch position on the touch sensitive device.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: September 22, 2015
    Assignee: Atmel Corporation
    Inventors: Luben Hristov, Harald Philipp
  • Patent number: 9081427
    Abstract: An exemplary touch position sensing panel includes an opaque electrode layer and a transparent electrode layer separated from the opaque electrode layer by a substrate. The electrodes are arranged such that nodes are formed in areas where the electrodes cross over each other. The transparent electrode layer shields the opaque layer from electric field noise from electric field sources underlying the position-sensing panel, such as a display, while at the same time providing transparency to light emitted from the underlying display. Techniques are also discussed for forming the transparent electrode layer and/or the opaque electrode layer.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: July 14, 2015
    Assignee: Atmel Corporation
    Inventor: Harald Philipp
  • Patent number: 9081572
    Abstract: In one embodiment, a method includes monitoring detection by a sensing element of a key touch on a touch screen; determining an amount of time that has elapsed since the sensing element last detected a change of capacitance indicative of a key touch on the touch screen; and, if the amount of time that has elapsed exceeds a predetermined time duration, then initiating a particular function of an apparatus.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: July 14, 2015
    Assignee: Atmel Corporation
    Inventors: Harald Philipp, Kevin Snoad
  • Patent number: 9041682
    Abstract: A controller includes drive circuitry to drive one target drive electrode of a touch sensitive device with a series of predetermined phase pulses and to drive at least one other drive electrode of the touch sensitive device with a corresponding series of out-of-phase pulses. Sense circuitry receives signal transferred to sense electrodes from the drive electrodes of the touch sensitive device. The received signal is responsive to one or more touches on the touch sensitive device.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: May 26, 2015
    Assignee: Atmel Corporation
    Inventors: Harald Philipp, Brent Guard
  • Patent number: 9024790
    Abstract: Keyboards, keypads and other data entry devices can suffer from a keying ambiguity problem. In a small keyboard, for example, a user's finger is likely to overlap from a desired key to onto adjacent ones. An iterative method of removing keying ambiguity from a keyboard comprising an array of capacitive keys involves measuring a signal strength associated with each key in the array, comparing the measured signal strengths to find a maximum, determining that the key having the maximum signal strength is the unique user-selected key, and maintaining that selection until either the initially selected key's signal strength drops below some threshold level or a second key's signal strength exceeds the first key's signal strength.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 5, 2015
    Assignee: Atmel Corporation
    Inventor: Harald Philipp
  • Patent number: 8970229
    Abstract: A method includes actuating a drive electrode to couple a majority of charge to a first sense electrode, a dielectric panel overlying the drive electrode, the first sense electrode, and a second sense electrode. The sense electrodes are separated by coupling gaps, the second sense electrode shielded from the drive electrode by the first sense electrode. The first sense electrode and at least one of the drive electrode and the second sense electrode each include at least two electrode elements, which are arranged interleaved on the dielectric panel in the sequence: drive electrode element, first sense electrode element, second sense electrode element, first sense electrode element, drive electrode element. The method includes sampling the first and second sense electrodes to collect respective first and second signal samples, subtracting the second signal sample from the first signal sample to obtain a final signal, and outputting the final signal.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: March 3, 2015
    Assignee: Atmel Corporation
    Inventor: Harald Philipp
  • Publication number: 20150042615
    Abstract: In one embodiment, a sensor includes a plurality of drive electrodes running generally in a first direction. The sensor also includes a plurality of sense electrodes running generally in a second direction. The sense electrodes have branches running generally in the first direction. End portions of the adjacent branches of adjacent sense electrodes extend beyond one another to define respective coextensive portions of the branches.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 12, 2015
    Inventors: Esat Yilmaz, Peter Sleeman, Samuel Brunet, Matthew Trend, Harald Philipp
  • Publication number: 20140300376
    Abstract: In particular embodiments, an apparatus includes a charge-measurement capacitor having a first plate coupled to a second plate of a coupling capacitor and a non-transitory computer-readable storage medium embodying logic that is operable when executed to ground a first plate of the coupling capacitor; inject a pre-determined amount of charge onto the charge-measurement capacitor; and transfer an amount of charge accumulated on the second plate of the coupling capacitor to the first plate of the charge-measurement capacitor. The charge accumulated on the second plate of the coupling capacitor is due at least in part to noise. The logic is also operable when executed to determine, through a measured voltage across the charge-measurement capacitor, the amount of charge.
    Type: Application
    Filed: January 13, 2014
    Publication date: October 9, 2014
    Inventors: Harald Philipp, Daniel Pickett, Esat Yilmaz
  • Publication number: 20140292716
    Abstract: In one embodiment, a method includes monitoring detection by a sensing element of a key touch on a touch screen; determining an amount of time that has elapsed since the sensing element last detected a change of capacitance indicative of a key touch on the touch screen; and, if the amount of time that has elapsed exceeds a predetermined time duration, then initiating a particular function of an apparatus.
    Type: Application
    Filed: June 9, 2014
    Publication date: October 2, 2014
    Inventors: Harald Philipp, Kevin Snoad
  • Publication number: 20140293154
    Abstract: A touchscreen includes touchscreen electrode elements distributed across an active area of a substrate, and the touchscreen overlays a display. The touchscreen electrode elements are configured to avoid creating moiré patterns between the display and the touchscreen, such as angled, wavy, zig-zag, or randomized lines. In a further example, the electrodes form a mesh pattern configured to avoid moiré patterns.
    Type: Application
    Filed: December 2, 2013
    Publication date: October 2, 2014
    Inventor: Harald Philipp
  • Patent number: 8847900
    Abstract: In one embodiment, a method includes receiving one or more first output signals from a first area of a touch-sensitive position sensor; receiving one or more second output signals from a second area of the touch-sensitive position sensor; calculating a first touch-position estimate based on the first output signals; calculating a second touch-position estimate based on the second output signals; and determining, based at least in part on the first and second touch-position estimates, an intended-touch location with respect to the touch-sensitive position sensor.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: September 30, 2014
    Assignee: Atmel Corporation
    Inventor: Harald Philipp
  • Patent number: 8830180
    Abstract: A capacitive position sensor has a two-layer electrode structure. Drive electrodes extending in a first direction on a first plane on one side of a substrate. Sense electrodes extend in a second direction on a second plane on the other side of the substrate so that the sense electrodes cross the drive electrodes at a plurality of intersections which collectively form a position sensing array. The sense electrodes are provided with branches extending in the first direction part of the way towards each adjacent sense electrode so that end portions of the branches of adjacent sense electrodes co-extend with each other in the first direction separated by a distance sufficiently small that capacitive coupling to the drive electrode adjacent to the co-extending portion is reduced. Providing sense electrode branches allow a sensor to be made which has a greater extent in the first direction for a given number of sense channels, since the co-extending portions provide an interpolating effect.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: September 9, 2014
    Assignee: Atmel Corporation
    Inventors: Esat Yilmaz, Peter Sleeman, Samuel Brunet, Matthew Trend, Harald Philipp
  • Publication number: 20140225850
    Abstract: Two different sets of electrodes in a touch sensitive device are formed to produce an electric field gradient from one end of the electrodes to the other end when opposite ends of the electrodes are driven with different voltages. A signal measuring cycle is performed by alternately driving the ends of one set of electrodes, while using the other set of electrodes to receive signals. The roles of the sets of electrodes are then reversed, such that the set that that was driven is now used to receive signals from the other set of electrodes. Reference signals may be obtained by driving both sides of one set of electrodes, and then both sides of the other set of electrodes. The signals obtained are then used to determine the touch position on the touch sensitive device.
    Type: Application
    Filed: April 21, 2014
    Publication date: August 14, 2014
    Inventors: Luben Hristov, Harald Philipp
  • Patent number: 8791910
    Abstract: In one embodiment, a method includes receiving two or more output signals responsive to two or more capacitive couplings. Each of the capacitive couplings has occurred between a pointing object and one of two or more sensing areas within a sensing region, and each of the sensing areas has a position within the sensing region. The method includes, if two or more of the output signals each have an output-signal level that exceeds a predefined activation level, then selecting a particular one of the sensing areas with output-signal levels exceeding the predefined activation level as an intended one of the sensing areas based on a predefined ranking scheme that takes into account the positions of the sensing areas within the sensing region.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: July 29, 2014
    Assignee: Atmel Corporation
    Inventor: Harald Philipp
  • Patent number: 8775049
    Abstract: A method for evaluating the state of a fuel-air mixture and/or the combustion in a combustion chamber of an internal combustion engine, with sample signals of flame light signals being stored in a database, and with flame light signals of the combustion in the combustion chamber being detected and compared with the stored sample signals, and with an evaluation of the state being output in the case of coincidence between the measured and stored signal patterns. In order to enable the monitoring of the combustion in the simplest possible way the sample signals in the database are stored with the assigned emission values and an evaluation of the state of the combustion is performed with respect to the obtained emissions in the case of coincidence between the measured and stored signal patterns for the combustion chamber of the respective cylinder.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: July 8, 2014
    Assignee: AVL List GmbH
    Inventors: Ernst Winklhofer, Heribert Fuchs, Alois Hirsch, Harald Philipp
  • Patent number: 8749251
    Abstract: In one embodiment, a method includes monitoring detection by a sensing element of a key touch on a touch screen; determining an amount of time that has elapsed since the sensing element last detected a change of capacitance indicative of a key touch on the touch screen; and, if the amount of time that has elapsed exceeds a predetermined time duration, then initiating a particular function of an apparatus.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: June 10, 2014
    Assignee: Atmel Corporation
    Inventors: Harald Philipp, Kevin Snoad
  • Publication number: 20140152919
    Abstract: A capacitive two-dimensional (2D) touch panel has three sets of interleaved electrodes. A first set of electrodes is spaced apart along the y-direction and these are galvanically connected to each other by a resistive strip connected at either end to a connection line. A second set of electrodes is also arrayed along the y-direction and these are galvanically connected to each other via a notionally non-resistive first connection. A third set of electrodes is also arrayed along the y-direction and these are galvanically connected to each other via a notionally non-resistive second connection. The second and third sets of electrodes are interleaved without galvanic cross-conduction to provide a gradient along the x-direction to resolve touch position in the x-direction. The first set of electrodes resolves touch position along the y-direction. Passive or active capacitive sensing techniques may be used to acquire the position information from the 2D touch panel.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 5, 2014
    Inventor: Harald Philipp
  • Publication number: 20140111223
    Abstract: A two-dimensional position sensor comprising a substrate with a sensitive area defined by a pattern of electrodes including electrodes for determining x-position and electrodes for determining y-position. The x-electrodes and y-electrodes generally extend in the x-direction and are interleaved in the y-direction. The x-electrodes comprise at least first, second and third groups of elements shaped such that adjacent ones of the elements of the different x-electrode groups co-extend in the x-direction so that the x-electrodes provide ratiometric capacitive signals, thereby providing quasi-continuous x-position sensing across the sensitive area. In addition, the y-electrodes may be resistively connected or arranged in ratiometric pairs to provide quasi-continuous y-position sensing. Alternatively, the x-electrode groups may be interdigitated to form pairs of x-adjacent blocks of differing area to provide stepwise x-position sensing in combination with stepwise y-position sensing provided by the y-electrodes.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Inventors: Harald Philipp, Luben Hristov
  • Patent number: 8704779
    Abstract: Two different sets of electrodes in a touch sensitive device are formed to produce an electric field gradient from one end of the electrodes to the other end when opposite ends of the electrodes are driven with different voltages. A signal measuring cycle is performed by alternately driving the ends of one set of electrodes, while using the other set of electrodes to receive signals. The roles of the sets of electrodes are then reversed, such that the set that that was driven is now used to receive signals from the other set of electrodes. Reference signals may be obtained by driving both sides of one set of electrodes, and then both sides of the other set of electrodes. The signals obtained are then used to determine the touch position on the touch sensitive device.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 22, 2014
    Assignee: Atmel Corporation
    Inventors: Luben Hristov, Harald Philipp
  • Patent number: 8648819
    Abstract: A capacitive two-dimensional (2D) touch panel has three sets of interleaved electrodes. A first set of electrodes is spaced apart along the y-direction and these are galvanically connected to each other by a resistive strip connected at either end to a connection line. A second set of electrodes is also arrayed along the y-direction and these are galvanically connected to each other via a notionally non-resistive first connection. A third set of electrodes is also arrayed along the y-direction and these are galvanically connected to each other via a notionally non-resistive second connection. The second and third sets of electrodes are interleaved without galvanic cross-conduction to provide a gradient along the x-direction to resolve touch position in the x-direction. The first set of electrodes resolves touch position along the y-direction. Passive or active capacitive sensing techniques may be used to acquire the position information from the 2D touch panel.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: February 11, 2014
    Assignee: Atmel Corporation
    Inventor: Harald Philipp