Patents by Inventor Harald Schnitzler

Harald Schnitzler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9618735
    Abstract: A microscope (10) includes an objective system (30) and a zoom system (32). The microscope (10) furthermore has a manually rotatable rotary wheel (108) for adjusting the magnification of the zoom system (32), the rotary wheel (108) being rotatable within a predetermined maximum rotation range. The rotary wheel (108) includes a first engagement element (162, 164). In addition, at least one second engagement element (130 to 136) is movably mounted on a housing (100) of the microscope (10). This second engagement element (130 to 136) is movable between a deactivated and an activated position, being in engagement with the first engagement element (162, 164) in an activated position. The position of the second engagement element (130 to 136) is determined by the respective objective (44, 52) currently received in the beam path.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: April 11, 2017
    Assignee: Leica Microsystems (Schweiz) AG
    Inventors: Rouven Heeb, Harald Schnitzler
  • Patent number: 9606346
    Abstract: The invention relates to an incident illumination device for a microscope, for viewing a sample (1) in the microscope (10), having a planar light source (100) for incident illumination of the sample (1), wherein the planar light source (100) comprises a panel-shaped light guide having a lower boundary surface (111), an upper boundary surface, and at least one lateral surface, as well as at least one light-emitting means that is arranged so that it irradiates light, via at least one lateral surface serving as a light entry surface, into the light guide in such a way that said light propagates in the light guide due to total reflection; wherein the total reflection is disrupted in defined fashion by an element abutting at the lower boundary surface of the light guide against a contact surface so that an outcoupling of light occurs at the upper boundary surface of the light guide.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: March 28, 2017
    Assignee: Leica Microsystems (Schweiz) AG
    Inventors: Robert Paulus, Harald Schnitzler, Reto Züst
  • Publication number: 20170024859
    Abstract: A microscope (10) for generating a combined image (34; 54; 64) from multiple individual images (28a to 28d; 52a to 52d; 62a to 62d) of an object (30; 50; 60) encompasses at least one illumination device (22) for illuminating the object (30; 50; 60) from at least two different illumination directions (24a, 24b); an image acquisition unit (26) for acquiring multiple individual images (28a to 28d; 52a to 52d; 62a to 62d) of the object (30; 50; 60) illuminated from the at least two different illumination directions (24a, 24b); and an image combination unit (32) for combining the individual images (28a to 28d; 52a to 52d; 62a to 62d) in order to obtain the combined image (34; 54; 64).
    Type: Application
    Filed: July 19, 2016
    Publication date: January 26, 2017
    Inventors: Harald SCHNITZLER, Robert PAULUS, Guenter GRABHER
  • Publication number: 20160306159
    Abstract: The invention relates to a microscopic image controller device (1) for a microscope (2), a microscope (2), and a microscoping method (100). The operation of the microscope (2) is simplified by allowing an automatic switching from a first image processing mode (110) to a second image processing mode (120), in particular one with multi-image processing, if no change or only a small change is detected.
    Type: Application
    Filed: April 15, 2016
    Publication date: October 20, 2016
    Inventor: Harald SCHNITZLER
  • Publication number: 20160291302
    Abstract: A method (200) is proposed for furnishing a digital resulting image, using a microscope system (1) that comprises means (R, L, 41) for furnishing microscopic images at different numerical apertures as well as a digital image capture unit (50). The method encompasses: capturing by means of the digital image capture unit (50), in the form of digital individual images, at least two microscopic images at different numerical apertures; and comparing respective mutually corresponding image regions of the digital individual images to one another in terms of their image sharpness, the image regions of the digital individual images having the greatest image sharpness being in each case combined to yield the digital resulting image.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 6, 2016
    Inventor: Harald Schnitzler
  • Patent number: 9329375
    Abstract: A microscope includes an image acquisition system, microscope components and a touch screen. The image acquisition system is configured to optically and digitally image an object so as to produce an object image The microscope components are at least one of motorized and electrically controllable. The touch screen is configured to display the object image in a display area thereof and to sense inputs in the display area within the displayed object image so as to change settings of the microscope components.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: May 3, 2016
    Assignee: LEICA MICROSYSTEMS (SCHWEIZ) AG
    Inventors: Reto Zuest, Ruedi Rottermann, Harald Schnitzler, Robert Lettow
  • Publication number: 20160097922
    Abstract: A microscope (10) includes an objective system (30) and a zoom system (32). The microscope (10) furthermore has a manually rotatable rotary wheel (108) for adjusting the magnification of the zoom system (32), the rotary wheel (108) being rotatable within a predetermined maximum rotation range. The rotary wheel (108) includes a first engagement element (162, 164). In addition, at least one second engagement element (130 to 136) is movably mounted on a housing (100) of the microscope (10). This second engagement element (130 to 136) is movable between a deactivated and an activated position, being in engagement with the first engagement element (162, 164) in an activated position. The position of the second engagement element (130 to 136) is determined by the respective objective (44, 52) currently received in the beam path.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 7, 2016
    Inventors: Rouven Heeb, Harald Schnitzler
  • Publication number: 20150260971
    Abstract: The invention relates to an incident illumination device for a microscope, for viewing a sample (1) in the microscope (10), having a planar light source (100) for incident illumination of the sample (1), wherein the planar light source (100) comprises a panel-shaped light guide having a lower boundary surface (111), an upper boundary surface, and at least one lateral surface, as well as at least one light-emitting means that is arranged so that it irradiates light, via at least one lateral surface serving as a light entry surface, into the light guide in such a way that said light propagates in the light guide due to total reflection; wherein the total reflection is disrupted in defined fashion by an element abutting at the lower boundary surface of the light guide against a contact surface so that an outcoupling of light occurs at the upper boundary surface of the light guide.
    Type: Application
    Filed: August 2, 2013
    Publication date: September 17, 2015
    Inventors: Robert Paulus, Harald Schnitzler, Reto Züst
  • Patent number: 8837042
    Abstract: A transillumination device (150) for a microscope (100) comprises a flat panel light source (151), a diaphragm arrangement (152) arranged behind the flat panel light source (151) in the radiating direction (AR) that comprises two diaphragm elements movable relative to one another, at least one of the two diaphragm elements having a cutout, the two diaphragm elements defining, together with the at least one cutout, a diaphragm opening, wherein the dimensions of the diaphragm opening in two mutually perpendicular directions are determined by the position of the diaphragm elements relative to one another.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: September 16, 2014
    Assignee: Leica Microsystems (Schweiz) AG
    Inventors: Robert Paulus, Harald Schnitzler, Didier Henry
  • Patent number: 8534893
    Abstract: A flat panel light source (100) for a transillumination device of a microscope comprises a plate-shaped light guide (110) having a lower and an upper boundary surface, and at least one lateral surface (113 to 116), and having at least one light-emitting means (120, 122) arranged to radiate light into the light guide (110) from at least two different directions, via at least one lateral surface serving as a light entrance surface, such that the light propagates in the light guide (110) as a result of total reflection, the total reflection being disrupted in defined fashion, by an element (140) abutting against a contact surface at the lower boundary surface of the light guide (110), so that an outcoupling of light occurs on the upper boundary surface of the light guide (110), the planar area of the contact surface being smaller than the planar area of the lower boundary surface.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: September 17, 2013
    Assignee: Leica Microsystems (Schweiz) AG
    Inventors: Robert Paulus, Reto Züst, Harald Schnitzler
  • Patent number: 8469572
    Abstract: A flat panel light source (100) for a transillumination device of a microscope comprises a plate-shaped light guide (110) having a lower and an upper boundary surface and at least one lateral surface (113 to 116), and at least one light-emitting means (120, 122) arranged to radiate light (130) into the light guide (110) from at least two different directions, via at least one lateral surface serving as a light entrance surface, such that light propagates in the light guide (110) by total reflection, the total reflection being disrupted in defined fashion by an element (140) abutting against a contact surface at the lower boundary surface of the light guide (110) so an outcoupling of light occurs on the upper boundary surface, the planar area of the contact surface being smaller than that of the lower boundary surface, the element (140) producing a directed reflection of the light (130).
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: June 25, 2013
    Assignee: Leica Microsystems (Schweiz) AG
    Inventors: Robert Paulus, Reto Züst, Harald Schnitzler
  • Publication number: 20120201046
    Abstract: A flat panel light source (100) for a transillumination device of a microscope comprises a plate-shaped light guide (110) having a lower and an upper boundary surface, and at least one lateral surface (113 to 116), and having at least one light-emitting means (120, 122) arranged to radiate light into the light guide (110) from at least two different directions, via at least one lateral surface serving as a light entrance surface, such that the light propagates in the light guide (110) as a result of total reflection, the total reflection being disrupted in defined fashion, by an element (140) abutting against a contact surface at the lower boundary surface of the light guide (110), so that an outcoupling of light occurs on the upper boundary surface of the light guide (110), the planar area of the contact surface being smaller than the planar area of the lower boundary surface.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 9, 2012
    Applicant: LEICA MICROSYSTEMS (SCHWEIZ) AG
    Inventors: Robert PAULUS, Reto Züst, Harald Schnitzler
  • Publication number: 20120200905
    Abstract: A transillumination device (150) for a microscope (100) comprises a flat panel light source (151), a diaphragm arrangement (152) arranged behind the flat panel light source (151) in the radiating direction (AR) that comprises two diaphragm elements movable relative to one another, at least one of the two diaphragm elements having a cutout, the two diaphragm elements defining, together with the at least one cutout, a diaphragm opening, wherein the dimensions of the diaphragm opening in two mutually perpendicular directions are determined by the position of the diaphragm elements relative to one another.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 9, 2012
    Applicant: LEICA MICROSYSTEMS (SCHWEIZ) AG
    Inventors: Robert PAULUS, Harald SCHNITZLER, Didier Henry
  • Publication number: 20120201047
    Abstract: A flat panel light source (100) for a transillumination device of a microscope comprises a plate-shaped light guide (110) having a lower and an upper boundary surface and at least one lateral surface (113 to 116), and at least one light-emitting means (120, 122) arranged to radiate light (130) into the light guide (110) from at least two different directions, via at least one lateral surface serving as a light entrance surface, such that light propagates in the light guide (110) by total reflection, the total reflection being disrupted in defined fashion by an element (140) abutting against a contact surface at the lower boundary surface of the light guide (110) so an outcoupling of light occurs on the upper boundary surface, the planar area of the contact surface being smaller than that of the lower boundary surface, the element (140) producing a directed reflection of the light (130).
    Type: Application
    Filed: January 26, 2012
    Publication date: August 9, 2012
    Applicant: Leica Microsystems (Schweiz) AG
    Inventors: Robert PAULUS, Reto ZÜST, Harald SCHNITZLER
  • Publication number: 20120120224
    Abstract: A microscope includes an image acquisition system, microscope components and a touch screen. The image acquisition system is configured to optically and digitally image an object so as to produce an object image The microscope components are at least one of motorized and electrically controllable. The touch screen is configured to display the object image in a display area thereof and to sense inputs in the display area within the displayed object image so as to change settings of the microscope components.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 17, 2012
    Applicant: LEICA MICROSYSTEMS (SCHWEIZ) AG
    Inventors: Reto Zuest, Ruedi Rottermann, Harald Schnitzler, Robert Lettow
  • Publication number: 20120120223
    Abstract: A portable microscope includes an integrated operator control unit configured for at least one of selecting and adjusting at least one electrically controllable function of the microscope. The operator control unit includes at least one sensor configured to receive user control commands for at least one of activation, deactivation and adjustment of the at least one electrically controllable function. The at least one sensor includes a touch sensor and is disposed so as to accommodate holding and operation of the microscope with a single hand of a user.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 17, 2012
    Applicant: LEICA MICROSYSTEMS (SCHWEIZ) AG
    Inventors: Reto Zuest, Harald Schnitzler, Ruedi Rottermann, Robert Lettow
  • Publication number: 20120120222
    Abstract: An operator control unit for use with a microscope is configured for at least one of selecting and adjusting at least one electrically controllable function of the microscope. The operator control unit is portable with one hand and includes a handle portion and at least one sensor configured to receive user control commands so as to at least one of activate, deactivate and adjust the at least one electrically controllable function. The at least one sensor includes a touch sensor and is disposed so as to accommodate holding and operation of the operator control unit simultaneously with one hand. The at least one sensor is disposed symmetrically with respect to the handle portion. The at least one sensor is assignable to different changeable microscope functions by actuation of at least one of the control unit and the at least one sensor.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 17, 2012
    Applicant: LEICA MICROSYSTEMS (SCHWEIZ) AG
    Inventors: Robert Lettow, Reto Zuest, Harald Schnitzler
  • Patent number: 8154795
    Abstract: The present invention relates to a stereo microscope (20) with a first and a second main beam path (21, 22), the spacing of which defines a stereo base (23), wherein an axis of the microscope (24) extends through the middle of the stereo base (23) parallel to the main beam paths (21, 22), and with an optical beam splitter device (30) for producing an assistant beam path (31) and a documentation beam path (32), wherein the direction of the assistant beam path (31) in a first position is rotated by 180° to the direction of the assistant beam path (31) in a second position of the beam splitter device (30), and the decoupled documentation beam path (32) in both positions of the beam splitter device (30) is in each case perpendicular to the decoupled assistant beam path (31), and wherein in both the first and second positions of the beam splitter device (30) the assistant beam path (31) can in each case be decoupled at least from the first main beam path (21) and the documentation beam path (32) can in each case b
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: April 10, 2012
    Assignee: Leica Instruments (Singapore) Pte. Ltd.
    Inventors: Harald Schnitzler, Peter Strobel, James Ng, Manfred Kuster
  • Patent number: 7751120
    Abstract: A stereomicroscope of the telescope type includes a first beam path and a second beam path, wherein in the first beam path a first telescope system and in the second beam path a second telescope system are provided, wherein the magnifications of both telescope systems are equal and can be changed synchronously to each other, and wherein a common main objective is allocated to both beam paths. In order to increase the resolution without loss in depth of field, it is proposed that at least one optical element of the first telescope system has, compared to at least one corresponding optical element of the second telescope system, a different optically effective diameter.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: July 6, 2010
    Assignee: Leica Instruments (Singapore) Pte. Ltd.
    Inventors: Klaus-Peter Zimmer, Ruedi Rottermann, Harald Schnitzler
  • Publication number: 20090268281
    Abstract: The present invention relates to a stereo microscope (20) with a first and a second main beam path (21, 22), the spacing of which defines a stereo base (23), wherein an axis of the microscope (24) extends through the middle of the stereo base (23) parallel to the main beam paths (21, 22), and with an optical beam splitter device (30) for producing an assistant beam path (31) and a documentation beam path (32), wherein the direction of the assistant beam path (31) in a first position is rotated by 180° to the direction of the assistant beam path (31) in a second position of the beam splitter device (30), and the decoupled documentation beam path (32) in both positions of the beam splitter device (30) is in each case perpendicular to the decoupled assistant beam path (31), and wherein in both the first and second positions of the beam splitter device (30) the assistant beam path (31) can in each case be decoupled at least from the first main beam path (21) and the documentation beam path (32) can in each case b
    Type: Application
    Filed: April 22, 2009
    Publication date: October 29, 2009
    Inventors: Harald SCHNITZLER, Peter Strobel, James NG, Manfred Kuster