Patents by Inventor Harish B. BHANDARI

Harish B. BHANDARI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11881391
    Abstract: Methods and systems for fabricating a film, such as, for example, a photocathode, having a tailored band structure and thin-film components that can be tailored for specific applications, such as, for example photocathode having a high quantum efficiency, and simple components fabricated by those methods.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: January 23, 2024
    Assignees: Radiation Monitoring Devices, Inc., University of Chicago, Brookhaven Science Associates, LLP
    Inventors: Harish B. Bhandari, Vivek V. Nagarkar, Olena E. Ovechkina, Henry J. Frisch, Klaus Attenkofer, John M. Smedley
  • Patent number: 11094495
    Abstract: Methods and systems for fabricating a film, such as, for example, a photocathode, having a tailored band structure and thin-film components that can be tailored for specific applications, such as, for example photocathode having a high quantum efficiency, and simple components fabricated by those methods.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: August 17, 2021
    Assignee: Radiation Monitoring Devices, Inc.
    Inventors: Harish B. Bhandari, Vivek V. Nagarkar, Olena E. Ovechkina, Henry J. Frisch, Klaus Attenkofer, John M. Smedley
  • Patent number: 10033152
    Abstract: An antireflective structure and a fabrication method thereof are disclosed. In one aspect, the antireflective structure includes a substrate, a buffer layer on the substrate, and an anticorrosion layer on the buffer layer, wherein the corrosion resistant layer comprises a densely packed cubic lattice structure. In one aspect, the fabrication method includes depositing a first buffer layer on a substrate in an e-beam deposition process, and depositing a first anticorrosion layer on the first buffer layer in an e-beam deposition process, wherein the substrate comprises sapphire, the first corrosion resistant layer comprises lutetia, and the first buffer layer comprise silicon carbide.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: July 24, 2018
    Assignee: RADIATION MONITORING DEVICES, INC.
    Inventors: Vivek V. Nagarkar, Zsolt Marton, Harish B. Bhandari
  • Patent number: 9916958
    Abstract: Methods and systems for fabricating a film, such as, for example, a photocathode, having a tailored band structure and thin-film components that can be tailored for specific applications, such as, for example photocathode having a high quantum efficiency, and simple components fabricated by those methods.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: March 13, 2018
    Assignees: RADIATION MONITORING DEVICES, INC., THE UNIVERSITY OF CHICAGO, BROOKHAVEN SCIENCE ASSOCIATES, LLC
    Inventors: Harish B. Bhandari, Vivek V. Nagarkar, Olena E. Ovechkina, Henry J. Frisch, Klaus Attenkofer, John M. Smedley
  • Patent number: 9720105
    Abstract: Strontium halide scintillators, calcium halide scintillators, cerium halide scintillators, cesium barium halide scintillators, and related devices and methods are provided.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: August 1, 2017
    Assignee: Radiation Monitoring Devices, Inc.
    Inventors: Vivek V. Nagarkar, Harish B. Bhandari
  • Publication number: 20170012001
    Abstract: An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces.
    Type: Application
    Filed: July 11, 2016
    Publication date: January 12, 2017
    Inventors: Roy Gerald GORDON, Harish B. BHANDARI, Yeung AU, Youbo LIN
  • Patent number: 9417343
    Abstract: A neutron detector and a method for fabricating a neutron detector. The neutron detector includes a photodetector, and a solid-state scintillator operatively coupled to the photodetector. In one aspect, the method for fabricating a neutron detector includes providing a photodetector, and depositing a solid-state scintillator on the photodetector to form a detector structure.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: August 16, 2016
    Assignee: Radiation Monitoring Devices, Inc.
    Inventors: Harish B. Bhandari, Vivek V. Nagarkar, Olena E. Ovechkina
  • Patent number: 9390971
    Abstract: An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: July 12, 2016
    Assignee: President and Fellows of Harvard College
    Inventors: Roy Gerald Gordon, Harish B. Bhandari, Yeung Au, Youbo Lin
  • Publication number: 20150325474
    Abstract: An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces.
    Type: Application
    Filed: July 8, 2015
    Publication date: November 12, 2015
    Inventors: Roy Gerald GORDON, Harish B. BHANDARI, Yeung AU, Youbo LIN
  • Patent number: 9112005
    Abstract: An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 18, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Roy Gerald Gordon, Harish B. Bhandari, Yeung Au, Youbo Lin
  • Patent number: 8957386
    Abstract: Strontium halide scintillators, calcium halide scintillators, cerium halide scintillators, cesium barium halide scintillators, and related devices and methods are provided.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: February 17, 2015
    Assignee: Radiation Monitoring Devices, Inc.
    Inventors: Vivek V. Nagarkar, Harish B. Bhandari
  • Patent number: 8735830
    Abstract: Zinc telluride scintillators and related devices and methods are provided.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: May 27, 2014
    Assignee: Radiation Monitoring Devices, Inc.
    Inventors: Vivek Nagarkar, Harish B. Bhandari, Valeriy Gaysinskiy
  • Patent number: 8569165
    Abstract: An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: October 29, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Roy Gerald Gordon, Harish B. Bhandari, Yeung Au, Youbo Lin
  • Publication number: 20110163062
    Abstract: An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces.
    Type: Application
    Filed: October 20, 2010
    Publication date: July 7, 2011
    Inventors: Roy G. GORDON, Harish B. BHANDARI, Yeung AU, Youbo LIN