Patents by Inventor Harish Radhakrishna Acharya

Harish Radhakrishna Acharya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11473838
    Abstract: An apparatus and method for flow management and CO2-recovery from a CO2 containing hydrocarbon flow stream, such as a post CO2-stimulation flowback stream. The apparatus including a flow control zone, a gas separation zone, a pretreatment zone, and a CO2-capture zone. The CO2-capture zone is in fluid communication with the pretreatment zone to provide CO2-capture from a pretreated flowback gas stream and output a captured CO2-flow stream. The CO2-capture zone includes a first CO2-enricher and at least one additional CO2 enricher disposed downstream of the first CO2 enricher and in cascading relationship to provide a CO2-rich permeate stream, the CO2-capture zone further including at least one condenser to condense the enriched CO2-stream and output the captured CO2-flow stream.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 18, 2022
    Assignee: BAKER HUGHES HOLDINGS LLC
    Inventors: Harish Radhakrishna Acharya, Roger Allen Shisler
  • Patent number: 11460244
    Abstract: A system and a method for producing liquefied natural gas are provided. The system includes a refrigeration loop system for providing a cold stream of refrigerant, a supersonic chiller for receiving and chilling a first gaseous natural gas stream to produce a liquefied natural gas liquid and separating the liquefied natural gas liquid from the first gaseous natural gas stream to obtain a second gaseous natural gas stream, and a cold box for receiving the cold stream of refrigerant and the second gaseous natural gas stream and cooling the second gaseous natural gas stream to obtain a liquefied natural gas by heat exchanging between the second gaseous natural gas stream and the cold stream of refrigerant.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: October 4, 2022
    Assignee: BAKER HUGHES OILFIELD OPERATIONS LLC
    Inventors: Lishun Hu, Jie Zhang, Harish Radhakrishna Acharya, Junli Xue, Jing Lv
  • Patent number: 11326418
    Abstract: Method includes recovering a stimulating fluid, which includes transferring working fluid having the stimulating fluid from an operating site (102) to a current temporary processing facility (TPF) (110) that is located remotely with respect to the operating site in the geographical region. After purifying the working fluid at the current TPF (110), thereby providing the stimulating fluid, the stimulating fluid is transferred from the current TPF to an injection site (103) that is located remotely with respect to the current TPF and the operating site. The method also includes transporting fluid-handling equipment after a designated condition has been satisfied. The fluid-handling equipment is transported from the current TPF (110) to a new TPF (110). The recovering of the stimulating fluid, the transferring of the stimulating fluid, and the transporting of the fluid-handling equipment is repeated a plurality of times. The current and new TPFs are at different locations within the geographical region.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: May 10, 2022
    Assignee: Baker Hughes Holdings LLC
    Inventors: Harish Radhakrishna Acharya, Roger Allen Shisler, Andrew Jacob Gorton
  • Publication number: 20210033337
    Abstract: A system, and a method for producing liquefied natural gas are provided. The system includes a heat exchanger, a first supersonic chiller, and a compression unit. The heat exchanger is for cooling a feed natural gas stream to obtain a cooled natural gas stream. The first supersonic chiller is for chilling the cooled natural gas stream to produce liquefied natural gas and output at least a portion of chilled gaseous natural gas to the heat exchanger to be heated to obtain a heated natural gas stream. The compression unit is for compressing the heated natural gas stream from the heat exchanger and providing a compressed natural gas stream to the heat exchanger to be cooled together with the feed natural gas stream by heat exchanging with the at least a portion of the chilled gaseous natural gas.
    Type: Application
    Filed: June 28, 2017
    Publication date: February 4, 2021
    Inventors: Lishun HU, Jie ZHANG, Junli XUE, Harish Radhakrishna ACHARYA, Jing LV
  • Publication number: 20200056457
    Abstract: Method includes recovering a stimulating fluid, which includes transferring working fluid having the stimulating fluid from an operating site (102) to a current temporary processing facility (TPF) (110) that is located remotely with respect to the operating site in the geographical region. After purifying the working fluid at the current TPF (110), thereby providing the stimulating fluid, the stimulating fluid is transferred from the current TPF to an injection site (103) that is located remotely with respect to the current TPF and the operating site. The method also includes transporting fluid-handling equipment after a designated condition has been satisfied. The fluid-handling equipment is transported from the current TPF (110) to a new TPF (110). The recovering of the stimulating fluid, the transferring of the stimulating fluid, and the transporting of the fluid-handling equipment is repeated a plurality of times. The current and new TPFs are at different locations within the geographical region.
    Type: Application
    Filed: April 20, 2017
    Publication date: February 20, 2020
    Inventors: Harish Radhakrishna ACHARYA, Roger Allen SHISLER, Andrew Jacob GORTON
  • Publication number: 20190137170
    Abstract: A system and a method for producing liquefied natural gas are provided. The system includes a refrigeration loop system for providing a cold stream of refrigerant, a supersonic chiller for receiving and chilling a first gaseous natural gas stream to produce a liquefied natural gas liquid and separating the liquefied natural gas liquid from the first gaseous natural gas stream to obtain a second gaseous natural gas stream, and a cold box for receiving the cold stream of refrigerant and the second gaseous natural gas stream and cooling the second gaseous natural gas stream to obtain a liquefied natural gas by heat exchanging between the second gaseous natural gas stream and the cold stream of refrigerant.
    Type: Application
    Filed: May 30, 2017
    Publication date: May 9, 2019
    Inventors: Lishun HU, Jie ZHANG, Harish Radhakrishna ACHARYA, Junli XUE, Jing LV
  • Patent number: 9985295
    Abstract: A solid oxide fuel cell is disclosed. The fuel cell includes a porous anode, formed of finely-dispersed nickel/stabilized-zirconia powder particles. The particles have an average diameter of less than about 300 nanometers. They are also characterized by a tri-phase length of greater than about 50 ?m/?m3. A solid oxide fuel cell stack is also described, along with a method of forming an anode for a solid oxide fuel cell. The method includes the step of using a spray-agglomerated, nickel oxide/stabilized-zirconia powder to form the anode.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: May 29, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Bastiaan Arie Korevaar, Yuk-Chiu Lau, Anteneh Kebbede, Harish Radhakrishna Acharya, Badri Narayan Ramamurthi, Gregory John Parker
  • Patent number: 9889401
    Abstract: An apparatus and method for flow management and CO2-recovery from a CO2 containing hydrocarbon flow stream, such as a post CO2-stimulation flowback stream. The apparatus including a flow control zone, a gas separation zone, a pretreatment zone, and a CO2-capture zone. The CO2-capture zone is in fluid communication with the pretreatment zone to provide CO2-capture from a pretreated flowback gas stream and output a captured CO2-flow stream. The CO2-capture zone includes a flow splitter to direct a first portion of the pretreated flowback gas stream to a CO2-enricher to provide an enriched CO2-stream for mixing with a second portion of the pretreated flowback gas to form a mixed stream. The CO2-capture zone further includes at least one condenser to output the captured CO2-flow stream.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Harish Radhakrishna Acharya, Roger Allen Shisler
  • Publication number: 20170176100
    Abstract: An apparatus and method for flow management and CO2-recovery from a CO2 containing hydrocarbon flow stream, such as a post CO2-stimulation flowback stream. The apparatus including a flow control zone, a gas separation zone, a pretreatment zone, and a CO2-capture zone. The CO2-capture zone is in fluid communication with the pretreatment zone to provide CO2-capture from a pretreated flowback gas stream and output a captured CO2-flow stream. The CO2-capture zone includes a first CO2-enricher and at least one additional CO2 enricher disposed downstream of the first CO2 enricher and in cascading relationship to provide a CO2-rich permeate stream, the CO2-capture zone further including at least one condenser to condense the enriched CO2-stream and output the captured CO2-flow stream.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Harish Radhakrishna Acharya, Roger Allen Shisler
  • Publication number: 20170173520
    Abstract: An apparatus and method for flow management and CO2-recovery from a CO2 containing hydrocarbon flow stream, such as a post CO2-stimulation flowback stream. The apparatus including a flow control zone, a gas separation zone, a pretreatment zone, and a CO2-capture zone. The CO2-capture zone is in fluid communication with the pretreatment zone to provide CO2-capture from a pretreated flowback gas stream and output a captured CO2-flow stream. The CO2-capture zone includes a flow splitter to direct a first portion of the pretreated flowback gas stream to a CO2-enricher to provide an enriched CO2-stream for mixing with a second portion of the pretreated flowback gas to form a mixed stream. The CO2-capture zone further includes at least one condenser to output the captured CO2-flow stream.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Harish Radhakrishna Acharya, Roger Allen Shisler
  • Patent number: 9656205
    Abstract: A system and method for treatment of a medium is disclosed. The system includes a plurality of separator zones and a plurality of heat transfer zones. Each of the separator zone and the heat transfer zone among the plurality of separator zones and heat transfer zones respectively, are disposed alternatively in a flow duct. Further, each separator zone includes an injector device for injecting a sorbent into the corresponding separator zone. Within the corresponding separator zone, the injected sorbent is reacted with a gaseous medium flowing in the flow duct, so as to generate a reacted gaseous medium and a reacted sorbent. Further, each heat transfer zone exchanges heat between the reacted gaseous medium fed from the corresponding separator zone and a heat transfer medium.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 23, 2017
    Assignee: General Electric Company
    Inventors: Surinder Prabhjot Singh, Harish Radhakrishna Acharya, Robert James Perry, John Brian McDermott
  • Patent number: 9580996
    Abstract: A method for processing a flowback composition stream from a well head includes controlling a first flow rate of the flow back composition stream to a second flow rate by regulating the flowback composition stream from a first pressure to a second pressure. The method also includes separating the flowback composition stream into a first gas stream and a condensed stream. The method includes discharging the condensed stream to a degasser and degassing a carbon dioxide rich gas from the condensed stream. The method also includes mixing the carbon dioxide rich gas stream with the first gas stream to produce a second gas stream. The method includes controlling a third flow rate of the second gas stream by regulating a third pressure of the second gas stream to a fourth pressure that is different than the third pressure.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: February 28, 2017
    Assignee: General Electric Company
    Inventors: Stephen Duane Sanborn, Imdad Imam, Andrew Philip Shapiro, John Brian McDermott, Harish Radhakrishna Acharya, Teresa Grocela Rocha, Jalal Hunain Zia, Johanna Wellington
  • Publication number: 20150345258
    Abstract: A method for processing a flowback composition stream from a well head is provided. The flowback composition stream has a first flow rate and a first pressure. Method also includes controlling the first flow rate to a second flow rate by regulating the flowback composition stream to a second pressure. The method also includes separating the flowback composition stream into a first gas stream and a condensed stream The method includes discharging the condensed stream to a degasser and degassing a carbon dioxide rich gas from the condensed stream. The method also includes mixing the carbon dioxide rich gas stream with the first gas stream to produce a second gas stream. The method includes controlling the third flow rate of the second gas stream by regulating the third pressure of the second gas stream to a fourth pressure that is different than the third pressure.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 3, 2015
    Inventors: Stephen Duane Sanborn, Imdad Imam, Andrew Philip Shapiro, John Brian McDermott, Harish Radhakrishna Acharya, Teresa Grocela Rocha, Jalal Hunain Zia, Johanna Wellington
  • Publication number: 20150167550
    Abstract: A system for processing a gas stream includes a gathering subsystem configured to collect the gas stream from a well-head and a gas conditioning subsystem for receiving the gas stream from the gathering subsystem and providing physical conditioning of the gas stream. The system includes one or more gas turbines configured to receive and combust a first flow of the conditioned gas stream from the gas conditioning subsystem and coupled with an electrical generator. The system includes one supplemental combustor configured to receive heated exhaust gases from the one or more gas turbines and a second flow of the conditioned gas stream from the gas conditioning subsystem, wherein the at least one supplemental combustor is configured to combust the second flow of the conditioned gas stream and the heated exhaust gases such that an exhaust gas stream flow from the at least one supplemental combustor meets emission regulation requirements.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: General Electric Company
    Inventors: Christian Lee Vandervort, Stephen Duane Sanborn, Joel Meier Haynes, Harish Radhakrishna Acharya, Ross Hartley Kenyon
  • Patent number: 9056274
    Abstract: A system includes a gas production source configured to produce a gas stream comprising nitrogen oxides (NOx) and a hydrocarbon injector disposed downstream of the gas production source and configured to inject a hydrocarbon into the gas stream. The hydrocarbon is configured to oxidize molecules of the NOx in the gas stream to produce a higher order compound of nitrogen and oxygen (NyOz). The system also includes a removal device disposed downstream of the hydrocarbon injector. The removal device is configured to remove the NyOz from the gas stream via absorption or reaction.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: June 16, 2015
    Assignee: General Electric Company
    Inventors: Gilbert Otto Kraemer, Harish Radhakrishna Acharya, Robert Thomas Thatcher
  • Publication number: 20150004082
    Abstract: A system and method for treatment of a medium is disclosed. The system includes a plurality of separator zones and a plurality of heat transfer zones. Each of the separator zone and the heat transfer zone among the plurality of separator zones and heat transfer zones respectively, are disposed alternatively in a flow duct. Further, each separator zone includes an injector device for injecting a sorbent into the corresponding separator zone. Within the corresponding separator zone, the injected sorbent is reacted with a gaseous medium flowing in the flow duct, so as to generate a reacted gaseous medium and a reacted sorbent. Further, each heat transfer zone exchanges heat between the reacted gaseous medium fed from the corresponding separator zone and a heat transfer medium.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Surinder Prabhjot Singh, Harish Radhakrishna Acharya, Robert James Perry, John Brian McDermott
  • Patent number: 8495882
    Abstract: A syngas cleanup section includes a water-gas shift reactor, a first operation unit and a second operation unit. The first operation unit includes a high permeance membrane with H2/CO2 selectivity in flow communication with the water-gas shift reactor to provide a H2-rich permeate stream and an H2-poor retentate stream. The second operation unit recovers H2 and CO from the retentate stream to produce a single, CO2-rich product stream, the entire content of which has a minimum pressure of at least about 10.0 bar. In one embodiment, the second operation unit includes a membrane with Knudsen selectivity for permeating H2, CO and CO2. In this embodiment, the permeate streams are combined to produce a H2 and CO-rich fuel stream used by a combined cycle power generation unit to produce electricity, and the retentate stream is sent to a catalytic oxidation unit to produce the CO2-rich product stream. In another embodiment, the second operation unit is the catalytic oxidation unit.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: July 30, 2013
    Assignee: General Electric Company
    Inventors: Anthony Yu-Chung Ku, Harish Radhakrishna Acharya, Parag Prakash Kulkarni, Scott Michael Miller, William Cook Livingood, III
  • Publication number: 20130134098
    Abstract: Methods for treating water to remove radium include contacting the water with a magnetic adsorbent comprising manganese oxide(s), and applying a magnetic field to separate the magnetic adsorbent from the water, whereby radium is removed from the water. The methods may additionally include regenerating the magnetic adsorbent, and contacting the water with regenerated magnetic adsorbent. Alternately, calcium and/or strontium may be precipitated as carbonate salts from lime-treated water containing radium and barium without precipitating a significant fraction of the barium or radium; and removing radium from calcium- and strontium-free water by precipitating the barium and radium as carbonate salts. The barium- and radium carbonate precipitate may be redissolved in hydrochloric acid and disposed of by deep-well injection.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William Leonard Kostedt, IV, James Manio Silva, Hope Matis, Vicki Herzl Watkins, Harish Radhakrishna Acharya
  • Publication number: 20130098049
    Abstract: A system includes a gas production source configured to produce a gas stream comprising nitrogen oxides (NOx) and a hydrocarbon injector disposed downstream of the gas production source and configured to inject a hydrocarbon into the gas stream. The hydrocarbon is configured to oxidize molecules of the NOx in the gas stream to produce a higher order compound of nitrogen and oxygen (NyOz). The system also includes a removal device disposed downstream of the hydrocarbon injector. The removal device is configured to remove the NyOz from the gas stream via absorption or reaction.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: General Electric Company
    Inventors: Gilbert Otto Kraemer, Harish Radhakrishna Acharya, Robert Thomas Thatcher
  • Patent number: 7901646
    Abstract: Disclosed herein are various types of systems and methods for the efficient production of sulfur from a sulfur-laden gas. The system described herein includes a desulfurization unit, a regenerator receiving sulfurized mass from the desulfurization unit, a sulfur recovery unit, a sulfur track in fluid communication with the regenerator and the sulfur recovery unit, and a sulfur concentrator on a sulfur track. The sulfur stream coming out of the regenerator is concentrated using the sulfur concentrator and converted into a sulfur product at the sulfur recovery unit.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: March 8, 2011
    Assignee: General Electric Company
    Inventors: Raul Eduardo Ayala, Harish Radhakrishna Acharya