Patents by Inventor Harlan Robins

Harlan Robins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10815277
    Abstract: The invention relates to inhibitory nucleotide signal sequences or “INS” sequences in the genomes of lentiviruses. In particular the invention relates to the AGG motif present in all viral genomes. The AGG motif may have an inhibitory effect on a virus, for example by reducing the levels of, or maintaining low steady-state levels of, viral RNAs in host cells, and inducing and/or maintaining in viral latency. In one aspect, the invention provides vaccines that contain, or are produced from, viral nucleic acids in which the AGG sequences have been mutated. In another aspect, the invention provides methods and compositions for affecting the function of the AGG motif, and methods for identifying other INS sequences in viral genomes.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: October 27, 2020
    Assignee: INSTITUTE FOR ADVANCED STUDY
    Inventors: Raul Rabadan, Michael Krasnitz, Harlan Robins, Daniela Witten, Arnold Levine
  • Publication number: 20170073376
    Abstract: The invention relates to inhibitory nucleotide signal sequences or “INS” sequences in the genomes of lentiviruses. In particular the invention relates to the AGG motif present in all viral genomes. The AGG motif may have an inhibitory effect on a virus, for example by reducing the levels of, or maintaining low steady-state levels of, viral RNAs in host cells, and inducing and/or maintaining in viral latency. In one aspect, the invention provides vaccines that contain, or are produced from, viral nucleic acids in which the AGG sequences have been mutated. In another aspect, the invention provides methods and compositions for affecting the function of the AGG motif, and methods for identifying other INS sequences in viral genomes.
    Type: Application
    Filed: August 4, 2016
    Publication date: March 16, 2017
    Inventors: Raul RABADAN, Michael KRASNITZ, Harlan ROBINS, Daniela WITTEN, Arnold LEVINE
  • Patent number: 9422342
    Abstract: The invention relates to inhibitory nucleotide signal sequences or “INS” sequences in the genomes of lentiviruses. In particular the invention relates to the AGG motif present in all viral genomes. The AGG motif may have an inhibitory effect on a virus, for example by reducing the levels of, or maintaining low steady-state levels of, viral RNAs in host cells, and inducing and/or maintaining in viral latency. In one aspect, the invention provides vaccines that contain, or are produced from, viral nucleic acids in which the AGG sequences have been mutated. In another aspect, the invention provides methods and compositions for affecting the function of the AGG motif, and methods for identifying other INS sequences in viral genomes.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: August 23, 2016
    Assignee: Institute of Advanced Study
    Inventors: Raul Rabadan, Michael Krasnitz, Harlan Robins, Daniela Witten, Arnold Levine
  • Publication number: 20160169890
    Abstract: The invention provides for the use of deep sequencing of the T-cell receptor beta CDR3 to identify, then track donor specific and/or recipient specific T cells in blood, urine and/or end-organs of transplant recipients.
    Type: Application
    Filed: April 18, 2014
    Publication date: June 16, 2016
    Inventors: Megan SYKES, Harlan ROBINS
  • Publication number: 20160138011
    Abstract: The invention relates to methods and compositions for estimating the absolute abundance individually for each unique rearranged lymphocyte receptor in a mixed sample.
    Type: Application
    Filed: November 13, 2015
    Publication date: May 19, 2016
    Inventors: William DEWITT, Ryan EMERSON, Harlan ROBINS, Anna SHERWOOD
  • Publication number: 20150218656
    Abstract: Methods and compositions are provided for detection and diagnosis of a lymphoid malignancy using high throughput sequencing of rearranged T cell receptor DNA sequences.
    Type: Application
    Filed: January 23, 2015
    Publication date: August 6, 2015
    Inventors: Ilan Kirsch, Harlan Robins, Rachael Clark, Thomas Kupper
  • Publication number: 20140370544
    Abstract: The present invention relates to methods and algorithms that can be used to identify sequence motifs that are either under- or over-represented in a given nucleotide sequence as compared to the frequency of those sequences that would be expected to occur by chance, or that are either under- or over-represented as compared to the frequency of those sequences that occur in other nucleotide sequences, and to methods of scoring sequences based on the occurrence of these sequence motifs. Such sequence motifs may be biologically significant, for example they may constitute transcription factor binding sites, mRNA stability/instability signals, epigenetic signals, and the like. The methods of the invention can also be used, inter alia, to classify sequences or organisms in terms of their phylogenetic relationships, or to identify the likely host of a pathogenic organism. The methods of the present invention can also be used to optimize expression of proteins.
    Type: Application
    Filed: July 9, 2014
    Publication date: December 18, 2014
    Inventors: Harlan ROBINS, Arnold LEVINE, Michael KRASNITZ
  • Publication number: 20100203081
    Abstract: The invention relates to inhibitory nucleotide signal sequences or “INS” sequences in the genomes of lentiviruses. In particular the invention relates to the AGG motif present in all viral genomes. The AGG motif may have an inhibitory effect on a virus, for example by reducing the levels of, or maintaining low steady-state levels of, viral RNAs in host cells, and inducing and/or maintaining in viral latency. In one aspect, the invention provides vaccines that contain, or are produced from, viral nucleic acids in which the AGG sequences have been mutated. In another aspect, the invention provides methods and compositions for affecting the function of the AGG motif, and methods for identifying other INS sequences in viral genomes.
    Type: Application
    Filed: July 12, 2007
    Publication date: August 12, 2010
    Applicant: INSTITUTE FOR ADVANCED STUDY
    Inventors: Raul Rabadan, Michael Krasnitz, Harlan Robins, Daniela Witten, Arnold Levine
  • Publication number: 20090208955
    Abstract: The present invention relates to methods and algorithms that can be used to identify sequence motifs that are either under- or over-represented in a given nucleotide sequence as compared to the frequency of those sequences that would be expected to occur by chance, or that are either under- or over-represented as compared to the frequency of those sequences that occur in other nucleotide sequences, and to methods of scoring sequences based on the occurrence of these sequence motifs. Such sequence motifs may be biologically significant, for example they may constitute transcription factor binding sites, mRNA stability/instability signals, epigenetic signals, and the like. The methods of the invention can also be used, inter alia, to classify sequences or organisms in terms of their phylogenetic relationships, or to identify the likely host of a pathogenic organism. The methods of the present invention can also be used to optimize expression of proteins.
    Type: Application
    Filed: November 30, 2006
    Publication date: August 20, 2009
    Applicant: INSTITUTE FOR ADVANCE STUDY
    Inventors: Harlan Robins, Michael Krasnitz, Arnold Levine
  • Publication number: 20090156535
    Abstract: An algorithm for identification of microRNA (miRNA) targets within viral and cellular RNA is disclosed. Also disclosed are essential herpes virus genes whose transcripts contain one or more targets of miRNAs encoded by herpes viruses or by host cells as predicted by the algorithm, and the use of such targets, miRNAs and their derivatives for modulating viral replication and latency.
    Type: Application
    Filed: September 29, 2008
    Publication date: June 18, 2009
    Applicants: The Trustees of Princeton University, The Institute For Advanced Study - Louis Bamberger and Mrs. Felix Fuld Foundation
    Inventors: Jiri Vanicek, Eain Murphy, Harlan Robins, Arnold J. Levine, Thomas Shenk